Question 1 Which of the following reactions are expected to go almost to completion (> 99% complete)? Check all that apply.
ASSUME ALL SPECIES in AQUEOUS SOLUTION, (aq), unless noted.

$$
\begin{array}{ll}
\text { Yes } & \mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-} \\
\text {No } & \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{OH}^{-}+\mathrm{NH}_{4}^{+} \\
\text {Yes } & \mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-} \\
\text {No } & \mathrm{HCN}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CN}^{-} \\
\text {No } & \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}+\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} \\
\text { Yes } & \mathrm{Fe}^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s}) \\
\text { No } & \mathrm{Fe}^{2+}+2 \mathrm{NO}_{3}^{-} \rightarrow \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) \\
\text { No } & \mathrm{FeS}(\mathrm{~s}) \rightarrow \mathrm{Fe}^{2+}+\mathrm{S}^{2-} \\
\text { Yes } & \mathrm{Cu}
\end{array}
$$

Question 2 Calculate the pH of a 0.25 M solution of propanoic $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right)$ acid.

$$
\begin{array}{lccc}
\mathrm{HA}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}, & \mathrm{~A}^{-}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-} \\
& \mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) & \Leftrightarrow & \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq}) \\
\mathrm{I} & 0.25 & \mathrm{~N} / \mathrm{A} & 0
\end{array}
$$

$$
\begin{aligned}
& \mathrm{Ka}=\left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]\right) /[\mathrm{HA}] \\
& 1.3 \times 10^{-5}=x \cdot x /(0.25-x) \\
& 1.3 \times 10^{-5} \approx x^{2} / 0.25 \\
& x=1.80 \times 10^{-3} \\
& \mathrm{pH}=\underline{2.74}
\end{aligned}
$$

Question 3 Calculate the pH of a solution prepared by mixing 0.35 mol propanoic acid and 0.25 mol

6 Points

 sodium propanoate $\left(\mathrm{NaCH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}\right)$ to create 1.00 liters of solution.| $\mathrm{HA}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}, \quad \mathrm{A}^{-}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-}$ | $\mathrm{Ka}=\left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]\right) /[\mathrm{HA}]$ | | |
| :--- | :---: | :--- | :--- |
| | | | $1.3 \times 10^{-5}=x(0.25+x) /(0.35-x)$ |
| | $\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \Leftrightarrow$ | $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})$ | $1.3 \times 10^{-5} \approx x(0.25 / 0.35)$ |
| I | 0.35 | $\mathrm{~N} / \mathrm{A}$ | 0 |
| C | 0.25 | | |
| E | $-x$ | | $+x$ |

Question 4 Which of the following mixtures will result in a buffer solution. Check all that apply. 5 Points

Yes Mixing 0.20 mol formic acid $\left(\mathrm{HCO}_{2} \mathrm{H}\right)$ and 0.80 mol sodium formate with 1 liter of water.

No Mixing 0.20 mol formic acid and 0.80 mol HCl with 1 liter of water.
No Mixing 0.20 mol formic acid and 0.80 mol NaOH with 1 liter of water.
Yes Mixing 0.80 mol formic acid and 0.20 mol NaOH with 1 liter of water.
Yes Mixing 0.20 mol HCl and 0.80 mol sodium formate with 1 liter of water.
Question 5 For each of the following salts, indicate if a solution of the salt will be acidic (A), basic 10 Points

B $\quad \mathrm{NaHCO}_{2}$

B $\quad \mathrm{NaCN}$
$\mathrm{N} \quad \mathrm{NaBr}$

A $\quad \mathrm{NH}_{4} \mathrm{NO}_{3}$
B $\quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{3}$

Question 6 For each of the following indicate if the species could act as a Lewis acid (A), a Lewis basic (B), or neither (N). If something can act as either an acid or a base, indicate both.
A

$A B$

$A B$

$A B$

B

Question 7 Draw the product of the Lewis acid base reaction that occurs between these two 4 Points species.

Attach OH_{2} via a lone pair to the C^{+}on the other molecule.

Question 8 We have 1.00 L of a solution containing 0.45 M propanoic acid $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right)$ and 0.30 M
7 Points sodium propanoate $\left(\mathrm{NaCH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}\right)$. To this solution we add 0.15 mol NaOH .

What is the pH of the resulting solution?

$\mathrm{OH}^{-}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}=\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}{ }^{-}$				
I	0.15	0.45	$\mathrm{~N} / \mathrm{A}$	0.30
C	-0.15	-0.15		+0.15
F	0	0.30		0.45

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{Ka}\{[$ Acid $] /[$ Base $]\}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.3 \times 10^{-5}(0.30 / 0.45)=1.95 \times 10^{-5}$
$\mathrm{pH}=\underline{5.06}$

Question 9 The below plot is a pH titration of an solution of an acid, HA, to which a solution of 12 Points NaOH was added. Answer each of the questions about the titration.

a. Is the acid titrated a strong acid or a weak acid? Weak Acid
b. For each of the numbered points in the titration, indicate what the nature of the solution is (e.g. strong acid, strong base, buffer, weak acid, weak base, neutral salt).

1. Weak Acid
2. Buffer
3. Weak Base
4. Strong Base
c. What is the approximate value of K_{a} of the acid, HA? 1.58×10^{-5}

Question 10 Use the $K_{\text {sp }}$ value to estimate the solubility of CaF_{2}, in $\mathrm{mol} / \mathrm{L}$.
6 Points

$$
\mathrm{K}_{\mathrm{sp}} \mathrm{CaF}_{2}(\mathrm{~s}) @ 298 \mathrm{~K}=5.3 \times 10^{-11}
$$

	$\mathrm{CaF}_{2}(s) \Leftrightarrow \mathrm{Ca}^{2+}+2 \mathrm{~F}^{-}$	$\mathrm{K}_{\text {sp }}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2}$	
I	0	0	$5.3 \times 10^{-11}=(x)(2 x)^{2}$
C	\times	$2 x$	$5.3 \times 10^{-11}=4 x^{3}$
E	\times	$2 x$	
			$x=2.37 \times 10^{-4}$ moles.L. ${ }^{-1}$

Question 11 What is the solubility of CaF_{2} in a solution that also contains 0.50 M NaF ?
7 Points

	$\mathrm{CaF}_{2}(\mathrm{~s}) \Leftrightarrow \mathrm{Ca}^{2+}+2 \mathrm{~F}^{-}$	$\mathrm{K}_{\text {sp }}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2}$	
I	0	0.5	$5.3 \times 10^{-11}=(x)(0.5+2 x)^{2}$
C	x	$2 x$	$5.3 \times 10^{-11} \approx(x)(0.5)^{2}$
E	x	$0.5+2 x$	
			$x=2.12 \times 10^{-10}$ moles. L $^{-1}$

Question $12 \mathrm{Cu}(\mathrm{OH})_{2}$ is a slightly soluble salt, as evidenced by its small value of Ksp . Suppose we had a 10 Points saturated solution of copper(II) hydroxide with an excess of the solid at the bottom of the beaker. To this solution we add other chemicals. Indicate whether addition of each of the following species would increase (I) the solubility, decrease (D) the solubility, or have no (N) effect.

I HCl

D $\quad \mathrm{NaOH}$

I $\quad \mathrm{NH}_{3}$
$\mathrm{N} \quad \mathrm{NaNO}_{3}$

N more $\mathrm{Cu}(\mathrm{OH})_{2}$ solid
Question 13 The bacterium Streptococcus pneumoniae has a radius of about 0.8 microns, or 8×10^{-5}
7 Points cm . Use the formula for the volume of a sphere, volume $=4 / 3 \pi r^{3}$ to calculate the volume of the bacterium.

Assuming the pH of the fluid in the cell is 7.6 , calculate how many free $\mathrm{H}_{3} \mathrm{O}^{+}$ions are present in one bacterium.

Avogadro's number $=6.023 \times 10^{23}$

$$
\begin{aligned}
& \text { Volume of the bacterium } \begin{aligned}
& =(4 / 3) \times 3.14 \times\left(8 \times 10^{-5}\right)^{3} \\
& =2.14 \times 10^{-12} \mathrm{~cm}^{3}
\end{aligned} \\
& \begin{aligned}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } \\
\mathrm{H}_{3} \mathrm{O}^{+} \text {molecules } \quad=2.51 \times 10^{-8} \text { moles. } \mathrm{L}^{-1}
\end{aligned} \\
& 2.14 \times 10^{-12} \mathrm{~cm}^{3} \times 1.61 \times 10^{13} \mathrm{~cm}^{-3} \approx 32
\end{aligned}
$$

