Name:

8 Digit ID Number:

Some Useful and Useless Information:

R: 8.314 J.mol ⁻¹ .K ⁻¹ , 0.08205 L.atm.mol ⁻¹ .K ⁻¹	$N = 6.023 \times 10^{23}$	
$(1/[R]_t) - (1/[R]_o) = -kt$	pX = -log ₁₀ [X]	
K _w = 1 x 10 ^{.14} @ 25°C	t _{1/2} : 1/k[R] _o ln2/k [R] _o /2k	
k = Ae ^{-E_a/RT}	ln[R] _t - ln[R] _o = -kt	
$\ln(k_2/k_1) = (-E_a/R) [(1/T_2) - (1/T_1)]$	$[R]_{o} - [R]_{t} = kt$	

Question 1The decomposition of dinitrogen pentoxide in carbon tetrachloride solution at 30 °C6 Points $2 N_2O_5 = 4 NO_2 + O_2$ is first order in N_2O_5 with a rate constant of 4.10×10^{-3} min⁻¹.

If the initial concentration of N_2O_5 is 0.693 M, how long (in minutes) will it take for the concentration of N_2O_5 to reach 0.148 M. [For Full Credit You Must Show Work]

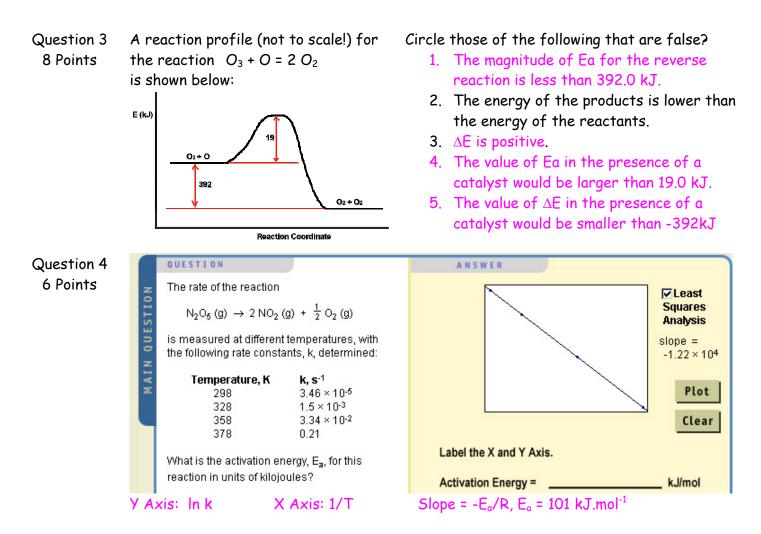
In {[R]_t/[R]₀} = -kt In {0.148/0.693} = -4.10×10⁻³t

t = 375 min

ime, min	[A], mol/L	1
0	0.7029	
1	0.4595	Y
2	0.3004	Slope = -0.425
3	0.1964	and the second sec
4	0.1284	X
5	0.0839	

Concentration time data for the reaction of A = Products is depicted above. The order of the reaction is either Zero, 1^{st} or 2^{nd} . What labels should appear on the X and Y axis if the reaction is:

Zero Order	X:	+	У:	[A]
First Order	X:	t	Y:	ln [A]
Second Order	X:	t	У:	1/[A] Note 1


If the reaction was found to be first order with the slope depicted what is the value for the rate constant k?

 $k = -slope = 0.425 min^{-1}$

What would the half life for this reaction be?

 $t_{\frac{1}{2}} = \{\ln 2/k\} = 1.63 \text{ min}$

Note 1: A Second order plot has a positive slope, the graph depicted has a negative one thus bonus point for anyone that gave X: t, Y: -1/[A].

Question 5The thermal decomposition of nitryl chloride is proposed to occur by the following8 Pointsmechanism:

slow: $NO_2CI = NO_2 + CI$ fast: $CI + NO_2CI = NO_2 + CI_2$ What is the equation for the overall reaction? $2 NO_2CI = 2NO_2 + CI_2$

Which species if any acts as a catalyst?

None

Which species if any acts as a reaction intermediate? Cl

Write the rate law for the overall reaction that is consistent with this mechanism.

```
Rate = k[NO<sub>2</sub>Cl]
```

Question 6 Write the equilibrium constant expression, K, for the following reaction: 6 Points

1. 1	NH₄I(s) ⇔NH₃(g) + HI(g)	K = [NH ₃][HI]
2.	2NO₂(g) ⇔N₂O₄(g)	$K = [N_2O_4]/[NO_2]^2$
3. I	HNO₂(aq) + H₂O(I) ⇔H₃O⁺(aq) + NO₂⁻(aq)	$K = [H_3O^+][NO_2^-]/[HNO_2]$

Question 7The equilibrium constant, K, for the following reaction is 8.37 at 736 K:4 Points $2 NH_3(g) \Leftrightarrow N_2(g) + 3 H_2(g)$ Calculate K at this temperature for: $1/2 N_2(g) + 3/2 H_2(g) \Leftrightarrow NH_3(g)$

Reversed and multiplied by $\frac{1}{2}$ K_{new} = (1/8.37)^{$\frac{1}{2}$} = 0.346

Question 8The equilibrium constant, K, for the following reaction is 77.5 at 600 K:7 Points $CO(g) + Cl_2(g) \Leftrightarrow COCl_2(g)$ Calculate the equilibrium concentrations of reactants and products when 0.470 moles of
CO and 0.470 moles of Cl_2 are introduced into a 1.00 L vessel at 600 K.

<u>Help!</u> The two solutions to the quadratic equation associated with this problem are: x = 0.555 and 0.398

	[<i>CO</i>]	[Cl ₂]	[COCl ₂]
Ι	0.47	0.47	0
С	-x	-x	×
Е	0.47-x	0.47-x	×

x = 0.398 is the only solution that makes chemical sense

[CO] = <mark>0.072</mark>	[<i>C</i> l ₂] = 0.072	[COCl ₂] = 0.398

Question 9 Consider the following reaction where K = 10.5 at 350 K: 10 Points $2 CH_2Cl_2(g) \Leftrightarrow CH_4(g) + CCl_4(g)$ A reaction mixture was found to contain 1.10×10^{-2} moles of $CH_2Cl_2(g)$, 2.30×10^{-2} moles of $CH_4(g)$, and 4.09×10^{-2} moles of $CCl_4(g)$, in a 1.00 Liter container.

 $Q = [CH_4][CCl_4]/[CH_2Cl_2]^2 = (2.3 \times 10^{-2})(4.09 \times 10^{-2})/(1.1 \times 10^{-2})^2 = 7.77 < K$

Indictate True or False:

1. In order to reach equilibrium $CH_2Cl_2(g)$ must be consumed.	True
2. In order to reach equilibrium K must decrease.	False
3. In order to reach equilibrium CH_4 must be consumed.	False
4. Q is greater than K.	False
5. The reaction is at equilibrium. No further reaction will occur.	False

Question 10Consider the following system at equilibrium where K = 1.80×10^{-2} and ΔH° = 10.4 at 698K:12 points2 HI(g) \Leftrightarrow H₂(g) + I₂(g)

<u>Indictate True or False:</u> 1. The reaction is product favored.	False
The production of H2(g) is favored by: 2. Decreasing the temperature.	False
3. Increasing the pressure (by changing the volume).	False
4. Increasing the volume.	False
5. Removing HI.	False
6. Adding I ₂ .	False

Question 11 The hypothetic reaction, A ⇔ B, after reaching equilibrium at 25°C is heated to 100°C.
5 points When equilibrium is reestablished it is found that the concentration of B has decreased. Is this enthalpy change associated with this reaction >0 or <0. Briefly justify your choice.

< 0 , the reaction must be exothermic.

The fact that heating the reaction caused a shift towards products indicates that heat is a product of this reaction, ie it is an exothermic reaction.

Question 12 5 Points	The formula for: the conjugate base of HF is.	F			
	the conjugate acid of NO_2^- is.	HNO ₂			
	the conjugate base of $H_2PO_4^-$ is.	HPO4 ²⁻			
	the conjugate acid of HCO_3^- is.	H ₂ CO ₃			
	the conjugate base of NH_4^+ is.	NH ₃			
Question 13 8 Points	The hydronium concentration in an aqueous solution @ $25^{\circ}C$ is 4.9×10^{-2} M.				
	The hydroxide ion concentration is:	2.04×10 ⁻¹³	[H₃O⁺][OH⁻] = K _w		
	The pH of this solution is:	1.31			
	The pOH is:	12.69			

The solution is (acidic/basic) Acidic

Question 14 If instead of 1×10^{-14} @ $25^{\circ}C$, the K_w for water was determined to be 1×10^{-16} @ $25^{\circ}C$. 5 Points

- 1. What would the pH of distilled water be @ $25^{\circ}C$? 8
- 2. Would water still be considered neutral? Yes Briefly Justify your choice?

 $[OH^{-}] = [H_3O^{+}] = 1 \times 10^{-8}$, thus water would still be neutral.