ID: \qquad - \qquad - \qquad

IA	${ }^{\prime \prime} A$	The Periodic Table												VA	VIA	VIIA	VIIIA		
$\begin{gathered} 1 \\ 1.01 \end{gathered}$												He 2 4.00							
$\begin{gathered} \mathrm{Li} \\ 3 \\ 6.94 \end{gathered}$	Be 4 9.01													$\begin{array}{\|c\|} \hline \mathrm{B} \\ 5 \\ 10.81 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { C } \\ 12.01 \\ \hline \end{array}$	N 7 14.01	$\begin{array}{\|c\|} \hline 0 \\ 8 \\ 16.00 \end{array}$	$\begin{gathered} \text { F } \\ 9 \\ 19.00 \end{gathered}$	Ne 10 20.18
$\begin{gathered} \mathrm{Na} \\ 11 \\ 22.99 \end{gathered}$	$\begin{array}{\|c\|} \hline 12 \\ 24.31 \\ \hline \end{array}$	${ }^{1 I \prime} \mathrm{~B}$	IVB	VB	VIB	VIIB	VIIHB	VIIIB	VIIIB	18	IIB	AI 13 26.98	$\begin{array}{\|c} \hline 14 \\ \mathrm{Si} \\ 28.09 \\ \hline \end{array}$	$\begin{gathered} \mathrm{P} \\ 15 \\ 30.97 \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{S} \\ 16 \\ 32.07 \end{gathered}$	$\begin{gathered} \mathrm{Cl} \\ 17 \\ 35.45 \end{gathered}$	18 18 39.95		
	$\begin{gathered} \mathrm{Ca} \\ 20 \\ 40.08 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{Sc} \\ 21 \\ 44.96 \end{array}$	$\begin{gathered} \hline \mathrm{Ti} \\ 22 \\ 47.88 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{V} \\ 23 \\ 50.94 \end{array}$	$\left\|\begin{array}{c} \mathrm{Cr} \\ 24 \\ 52.00 \end{array}\right\|$	$\begin{array}{\|l\|l} \hline \mathrm{Mn} \\ 25 \\ 54.94 \end{array}$	Fe 26 55.85	$\begin{array}{\|c\|} \hline \text { Co } \\ 27 \\ 58.93 \end{array}$	$\begin{gathered} \mathrm{Ni} \\ 28 \\ 58.69 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{Cu}_{29} \\ 63.55 \end{array}$	Zn 30 65.39	$\begin{gathered} \mathrm{Ga} \\ 31 \\ 69.72 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{Ge} \\ 32 \\ 72.61 \end{array}$	$\begin{gathered} \text { As } \\ 33 \\ 74.92 \end{gathered}$	34 34.96 7	$\begin{gathered} \mathrm{Br} \\ 35 \\ 79.90 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{Kr} \\ 36 \\ 83.80 \end{array}$		
$\begin{array}{c\|} \hline \mathrm{Rb} \\ 37 \\ 85.47 \end{array}$	$\begin{array}{\|c\|} \hline 3 \mathrm{Sr} \\ 38 \\ 87.62 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{Y} \\ 39 \\ 88.91 \\ \hline \end{array}$	$\begin{array}{c\|} \hline \mathrm{Zr} \\ 40 \\ 91.22 \\ \hline \end{array}$	$\begin{gathered} \mathrm{Nb} \\ 41 \\ 92.91 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{Mo} \\ 42 \\ 95.94 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{Tc} \\ 43 \\ (97.9) \end{array}$	$\begin{array}{\|c} \hline \mathrm{Ru} \\ 44 \\ 401.07 \\ \hline \end{array}$	$\begin{gathered} \mathrm{Rh} \\ 45 \\ 102.91 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Pd} \\ 46 \\ 106.42 \end{gathered}$	Ag_{47} 107.87	$\begin{gathered} c \mathrm{Cd} \\ { }_{7}{ }_{4112.41}^{48} \end{gathered}$	$\begin{gathered} \ln \\ 49 \\ 114.82 \end{gathered}$	$\begin{gathered} \mathrm{Sn} \\ 50 \\ 118.71 \end{gathered}$	$\begin{aligned} & \text { Sb } \\ & 51 \\ & 51.76 \end{aligned}$	$\begin{gathered} \mathrm{Te} \\ 52 \\ 127.60 \end{gathered}$	$\begin{gathered} 1 \\ 53 \\ 26.9 \end{gathered}$	Xe 54 131.29		
$\begin{aligned} & \text { Cs } \\ & 55 \end{aligned}$	Ba ${ }_{137}^{56}$	$\begin{aligned} & \mathrm{La} \\ & 57 \\ & 128.01 \end{aligned}$	$\begin{aligned} & \mathrm{Hf} \\ & 72 \end{aligned}$	$\begin{gathered} \mathrm{Ta} \\ 73 \end{gathered}$	$\begin{aligned} & 74 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{Re} \\ 75 \\ 186 \end{gathered}$	$\begin{gathered} 76 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{Ir} \\ & 77 \end{aligned}$	$\begin{aligned} & \mathrm{Pt} \\ & 78 \end{aligned}$	$\begin{gathered} \mathrm{Au} \\ 79 \\ 197 \end{gathered}$	$\underset{80}{\mathrm{Hg}}$	TI	$\begin{aligned} & \mathrm{Pb} \\ & 82 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Bi} \\ & 83 \end{aligned}$	$\begin{aligned} & \mathrm{Po} \\ & 84 \\ & 8 \end{aligned}$	${ }_{85}^{\text {At }}$	Rn 86 1222		
Fr 87 223.02	$\begin{gathered} \mathrm{Ra} \\ 88 \\ 226.03 \end{gathered}$	$\begin{gathered} A c \\ 89 \\ 227.03 \end{gathered}$	$\begin{gathered} \hline \mathrm{Rf} \\ 104 \\ (261) \end{gathered}$	$\begin{gathered} \hline \mathrm{Db} \\ 105 \\ (262) \end{gathered}$	$\begin{aligned} & \mathrm{Sg} \\ & 106 \\ & (263) \end{aligned}$	$\begin{aligned} & \mathrm{Bh} \\ & 107 \\ & (262) \end{aligned}$	190.2 Hs 108 (265)	$\begin{aligned} & \mathrm{Mt} \\ & 109 \\ & (266) \end{aligned}$											

$\begin{array}{c\|} \hline \mathrm{Ce} \\ 58 \\ 140.12 \end{array}$	$\begin{aligned} & \hline \mathrm{Pr} \\ & 59 \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{Nd} \\ 60 \end{array}$	$\stackrel{\mathrm{Pm}}{61}$	$\begin{array}{\|c\|} \hline 6 \mathrm{Sm} \\ 150.36 \\ 15 \end{array}$	$\begin{array}{\|l\|} \hline \text { Eu } \\ 63 \\ \hline \end{array}$	$\left.\begin{array}{\|c\|} \hline \mathrm{Gd} \\ 64 \\ 157.25 \end{array} \right\rvert\,$	$\begin{gathered} \mathrm{Tb} \\ 65 \end{gathered}$	$\begin{gathered} \text { Dy } \\ \begin{array}{c} 66 \\ 162.50 \end{array} \end{gathered}$	$\begin{gathered} \mathrm{Ho} \\ 67 \\ 164.93 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{Er} \\ 68 \\ 167.26 \end{array}$	Tm_{69}	Yb 70 70.04	71 174.97
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	${ }_{93}$	94	95	96	97	98	99	100	101	102	103
22.0	231.0	8.0		240)	243.0	(247)	(248)	251)	52.0		(257)	259.10	

Useful Information

- $\mathrm{N}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$
- $\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s}$
- $\mathrm{c}=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$
- $\lambda v=c$
- $\mathrm{E}=\mathrm{h} v$
- Density $=\mathrm{m} / \mathrm{v}$

Question 1 Fill in the blanks in the following table:
8 Points

Symbol	${ }^{32} \mathrm{~S}^{2 .}$	${ }^{65} \mathrm{Cu}^{2+}$
\# Protons	16	29
\# Neutrons	16	36
\# Electrons	18	27

Question 2 Lithium fas two naturally occurring is otopes:
5 Points
Mass
Abundance
$\begin{array}{ll}{ }^{6} \mathrm{Li} & 6.0151 \mathrm{amu} \\ { }^{7} \mathrm{Li} & 7.0160 \mathrm{amu}\end{array}$
7.50%
92.50%
Determine the average Molar Mass of Lithium. [S how Work]

Molar Mass $=(6.0151)(0.0750)+(7.0160)(0.9250)=6.94$

Question 3 10 Points

1. Name the element in the $2^{\text {nd }}$ period of Group VIA. Oxygen
2. Name the lightest Alkali Earthelement. Berylfium
3. Give the symbol of the Halogen in the $5^{\text {th }}$ period. I
4. Group $11 \mathcal{A}$ Metals like to have what charge +2
5. Group VIIIA are collectively referred to as: Noble Gases

Question 4 One of the salts given below is not soluble in water. Circle it and give a brief explanation 5 Points as to why this might be so?

$$
\mathfrak{N a B r} \quad \mathrm{CaCO}_{3}
$$

$\mathcal{N} a \mathcal{B r}=\mathcal{N} a^{+}, \mathcal{B r}$
$\mathrm{CaCO}_{3}=\mathrm{Ca}^{2+}, \mathrm{CO}_{3}{ }^{2 .}$
Stronger Columbic Attraction folding $\mathrm{CaCO}_{3}(+2,-2)$

Question 5 Anexperiment calls for the use of 0.125 moles of sodium. Howmanygrams is this? 4 Points [S how Work]
$0.125 \mathrm{~mol} \mathcal{N a x}(22.99 \mathrm{~g} / 1 \mathrm{~mol})=2.87 \mathrm{~g}$

Question 6 Analysis of $\mathrm{Cr}_{x} \mathrm{O}_{y}$ showed that it contained $68.4 \% \mathrm{Cr}$. What is the charge on the Chromium

6 Points in this oxide? [S how Work]

	Cr	O
	68.4 g	31.6 g
	1.315 mol	1.975 mol
	1.00	1.50
x^{2}	2.00	3.00
	Empirical	$\mathrm{r}_{2} \mathrm{O}_{3}$
	Charge on	

Question 7
5 Points

With respect to the green region of the visible spectrum depicted above: Circle those that apply.

1. The color(s) with agreater frequency is/are: Blue Yellow Red
2. The color(s) with a lower energy is/are: Blue Yellow Red
3. The color(s) with a longer wavelength is/are: Blue Yellow Red

Question 8 6 Points

Question 9 The following question refer to the orbitalde picted below:

9 Points

1. This is what type of orbital?
s
(I am looking for the letter designation)
2. What value of n is associated with this? 3
3. What is the totalnumber of orbitals that can have this n value?

Question 10 6 Points

Aluminum emits light with a wave length of $396.15 \mathrm{~nm}\left(1 \mathrm{~nm}=1 \times 10^{-9} \mathrm{~m}\right)$. What is the energy associated with one photon of this light.
[S kow Work]

$$
\begin{aligned}
& 396.15 \mathrm{~nm}\left(1 \chi 10^{-9} \mathrm{~m} / 1 \mathrm{~nm}\right)=396.15 \times 10^{-9} \mathrm{~m}=3.9615 \times 10^{-7} \mathrm{~m} \\
& \lambda v=c \\
& \left(3.9615 \times 10^{-7} \mathrm{~m}\right) \mathrm{V}=2.998 \times 10^{8} \mathrm{~m} . \mathrm{s}^{-1} \\
& v=\left[2.998 \times 10^{8} / 3.9615 \times 10^{-7}\right] \mathrm{s}^{-1}=7.5678 \times 10^{14} \mathrm{~s}^{-1} \\
& \mathcal{E}=f v \\
& \mathcal{E}=\left(6.626 \times 10^{-34} \mathrm{~g} . \mathrm{s}^{-1}\right)\left(7.5678 \times 10^{14} \mathrm{~s}^{-1}\right)=5.0145 \times 10^{-19} \mathrm{~g}
\end{aligned}
$$

Question 11 6 Points
$\mathcal{A n}$ unknown organic compound is found to be $74.0 \% \mathcal{C}, 8.70 \% \mathcal{H}$ and $17.30 \% \mathcal{N}$. It's molar mass is $162.0 \mathrm{~g} \cdot \mathrm{~mol}{ }^{1}$. What is the molecular formula of this compound? [S kow Work]

C	\mathcal{H}	\mathcal{N}
74.0 g	8.70 g	17.30 g
6.16 mol	8.61 mol	1.23 mol
5.01	7.00	1.00
Empiric al Formula: $\mathcal{C}_{5} \mathcal{H}_{7} \mathcal{N}$		
Empirical Molar Mass: 5(12.01) $+7(1.01)+14.01=81.13 \mathrm{~g} \cdot \mathrm{~mol}$ Molar Mass of Unknown: 162.0 g.mol ${ }^{1}$		
Mole cula	$\mathcal{C}_{10} \mathcal{H}_{14} \mathcal{N}_{2}$	

Question 12 Give the correct name for each of the following ionic compounds.
8 Points

1. $\mathcal{F e}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
Iron(III) sulfate
2. $\mathcal{A l}\left((O \mathcal{H})_{3} \quad\right.$ Aluminum fydroxide
3. $\mathfrak{N a C l O}_{2}$
Sodium chlorite
4. $\mathcal{K}_{1} \mathcal{P}$
Potassium phospfide

Question 13 Give the correct formula for each of the following ionic compounds. 8 Points

1. Ammonium chloride $\quad \mathcal{N} \mathcal{H}_{4} \mathrm{Cl}$
2. Iron(III) oxide $\mathcal{F e}_{2} \mathrm{O}_{3}$
3. Potassium dicfromate $\quad \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
4. Magne sium cyanide $\quad \operatorname{Mg}\left(\mathrm{CN}_{2}\right.$

On the actualexam this was Lead cyanide. This name was some what unambiguous based on how I asked you to name transition metals. Thus full credit was given for all attempts at a formula.

Question 14 Give the correct formula for each of the following:
8 Points

1. \mathcal{N} itric acid $\quad \mathcal{H}_{\mathcal{N}} \mathrm{O}_{3}$
2. Percfloric acid HClO_{4}
3. Litfium fydroxide LiOH
4. Sulfuric acid $\quad \mathcal{H}_{2} \mathrm{SO}_{4}$

Question 15 Balance the following chemical equations:
6 Points

1. $2 \operatorname{Cr}(s)+3 \operatorname{Cl}_{2}(g)=2 \operatorname{CrCl}_{3}(s)$
2. $3 \mathcal{F e}(s)+4 \mathcal{H}_{2} O(g)=\mathcal{F e}_{3} O_{4}(s)+4 \mathcal{H}_{2}(g)$
3. $\mathcal{C}_{2} \mathcal{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathcal{g})=2 \mathrm{CO}_{2}(\mathfrak{g})+3 \mathcal{H}_{2} \mathrm{O}(\mathfrak{g})$
