

(248) (251) 252.08 257.10 (257)

259.10 262.11

232.04 231.04 238.03 237.05 (240) 243.06 (247)

Useful Information

- $$\begin{split} N &= 6.02 x 10^{23} \text{ mot}^1 \\ h &= 6.626 x 10^{-34} \text{ J.s} \end{split}$$
- $c = 2.998 \times 10^8 \text{ m/s}$
- $\lambda v = c$
- E = hv
- Density = m/v

Question 1 Fill in the blanks in the following table:

8 Points

Symbol	³² S ²⁻	⁶⁵ Cu ²⁺
# Protons	16	29
# Neutrons	16	36
# Electrons	18	27

Question 2
5 PointsLithium has two naturally occurring isotopes:
MassAbundance⁶Li6.0151 amu7.50%⁷Li7.0160 amu92.50%

Determine the average Molar Mass of Lithium. [Show Work]

Molar Mass = (6.0151)(0.0750) + (7.0160)(0.9250) = 6.94

Question 3 Use the Periodic Table accompanying this exam to answer the following questions: 10 Points

1. Name the element in the 2 nd period of Group VI A.	Oxygen
2. Name the lightest Alkali Earth element.	Beryllium
3. Give the symbol of the Halogen in the 5^{th} period.	I.
4. Group 11A Metals like to have what charge	+2
5. Group VIIIA are collectively referred to as:	Noble Gases

Question 4 One of the salts given below is not soluble in water. Circle it and give a brief explanation as to why this might be so?

	NaBr	CaCO ₃
NaBr = Na⁺ , Br⁻		
$CaCO_3 = Ca^{2+}, CO_3^{2-}$		
Stronger Columbic Attrac	tion holding	g CaCO ₃ (+2, -2)

Question 5An experiment calls for the use of 0.125 moles of sodium. How many grams is this?4 Points[Show Work]

0.125 mol Na x (22.99 g/ 1 mol) = 2.87 g

Question 6 Analysis of Cr_xO_y showed that it contained 68.4% Cr. What is the charge on the Chromium in this oxide? [Show Work]

	Cr	0
	68.4 g	31.6 g
	<u>1.315</u> mol	1.975 mol
	1.00	1.50
x2	2.00	3.00

Empirical Formula: Cr₂O₃

Charge on Cr = +3

With respect to the green region of the visible spectrum depicted above: Circle those that apply.

1.	The color(s) with a greater frequency is/are:	Blue	Yellow	Red
2.	The color(s) with a lower energy is/are:	Blue	Yellow	Red
3.	The color(s) with a longer wavelength is/are:	Blue	Yellow	Red

Question 8 An FM radio broadcasts @ 8.89x10⁷ Hz. What wavelength does this correspond to? [Show Work]

 $\lambda v = c$ $\lambda (8.89 \times 10^7 \text{ s}^{-1}) = 2.998 \times 10^8 \text{ m.s}^{-1}$ $\lambda = 3.37 \text{ m}$ Question 9 The following question refer to the orbital depicted below:

9 Points

- 1. This is what type of orbital? s (I am looking for the letter designation)
- 2. What value of n is associated with this? 3
- What is the total number of orbitals that can have this n value?
 9

Question 10
6 PointsAluminum emits light with a wavelength of 396.15 nm (1 nm = 1x10⁻⁹ m). What is the
energy associated with one photon of this light.[Show Work]

 $396.15 \text{ nm} (1 \times 10^{-9} \text{ m/1 nm}) = 396.15 \times 10^{-9} \text{ m} = 3.9615 \times 10^{-7} \text{ m}$

 $\lambda v = c$ (3.9615x10⁻⁷ m) $v = 2.998x10^8$ m.s⁻¹ $v = [2.998x10^8/3.9615x10^{-7}]$ s⁻¹ = 7.5678x10¹⁴ s⁻¹

E = hvE = (6.626x10⁻³⁴ J.s⁻¹)(7.5678x10¹⁴ s⁻¹) = 5.0145x10⁻¹⁹ J

Question 11 An unknown organic compound is found to be 74.0% C, 8.70% H and 17.30% N. It's molar ^{6 Points} mass is 162.0 g.mol⁻¹. What is the molecular formula of this compound?

[Show Work]

С	Н	N
74.0 g	8.70 g	17.30 g
6.16 mol	8.61 mol	<u>1.23</u> mol
5.01	7.00	1.00

Empirical Formula: C₅H₇N

Empirical Molar Mass: $5(12.01) + 7(1.01) + 14.01 = 81.13 \text{ g.mol}^{-1}$ Molar Mass of Unknown: 162.0 g.mol⁻¹

Molecular Formula: C₁₀H₁₄N₂

Question 12 Give the correct name for each of the following ionic compounds. 8 Points

1.	Fe ₂ (SO ₄) ₃	Iron(III) sulfate
2.	AI(OH) ₃	Aluminum hydroxide
3.	NaCIO ₂	Sodium chlorite
4.	K ₃ P	Potassium phosphide

Question 13 Give the correct formula for each of the following ionic compounds. ^{8 Points}

1.	Ammonium chloride	NH ₄ CI
----	-------------------	--------------------

2. Iron(III) oxide Fe_2O_3

3. Potassium dichromate $K_2Cr_2O_7$

Magnesium cyanide Mg(CN)₂
On the actual exam this was Lead cyanide. This name was somewhat unambiguous based on how I asked you to name transition metals. Thus full credit was given for all attempts at a formula.

Question 14 Give the correct formula for each of the following: 8 Points

- 1. Nitric acid HNO₃
- 2. Perchloric acid HCIO₄
- 3. Lithium hydroxide LiOH
- 4. Sulfuric acid H_2SO_4

Question 15 Balance the following chemical equations: 6 Points

- 1. $2 Cr(s) + 3 Cl_2(g) = 2 CrCl_3(s)$
- 2. 3 Fe(s) + 4 H₂O(g) = Fe₃O₄(s) + 4 H₂(g)
- 3. $C_2H_5OH(I) + 3O_2(g) = 2CO_2(g) + 3H_2O(g)$