Chem 110

Rb

37

Sr

38

Y

39

Zr

40

Nb

41

Mo

42

Tc

43

VIIIA

He 2

4.00

Ne

10

Ar

18

39.95

Kr

36

Xe

54

19.00 20.18

VIIA

F

9

CI

17

35.45

Br

35

53

ID: _____-

The Periodic Table IA Н 1 1.01 IIA IVA VA VIA lilA Li Be С N 0 В 4 9.01 5 6 7 8 3 6.94 10.81 12.01 14.01 16.00 Ρ Na Mg AL Si S 15 11 12 13 14 16 22.99 24.31 26.98 28.09 30.97 VIIB VIIIB VIIIB VIIIB IB 32.07 IIIB IVB VB VIB IIB ۷ K Ca Sc Ti Cr Mn Fe Co Ni Cu Zn Ga Ge As Se 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.39 69.72 72.61 74.92 78.96 79.90 83.80 Ag

Ru

44

Rh

45

85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	en en en en en								
87	88	89	104	105	106	107	108	109									
223.02	226.03	227.03	(261)	(262)	(263)	(262)	(265)	(266)									
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Но	Er	Tm	Yb	Lu
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
			2		140.91	144.24	(145)	150.36	152.97		158.93	162.50	164.93	167.26	168.93	173.04	174.97
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
				90	91	92	93	94	95	96	97	98	99	100	101	102	103

Pd

46

47

Cd

48

In

49

(248) (251) 252.08 257.10 (257) 259.10 262.11

Sn

50

Sb

51

Te

52

Solubility Rules for some ionic compounds in water

232.04 231.04 238.03 237.05 (240) 243.06 (247)

	Soluble Ionic Compounds
1.	All sodium (Na ⁺), potassium (K ⁺) and ammonium (NH ₄ ⁺) salts are SOLUBLE.
2.	All nitrate (NO ₃ ⁻), acetate (CH ₃ CO ₂ ⁻), chlorate (ClO ₃ ⁻), and perchlorate (ClO ₄ ⁻) salts are SOLUBLE.
3.	All chloride (Cl-), bromide (Br -), and iodide (I-) salts are SOLUBLE - EXCEPT those also
	containing: lead, silver, or mercury (I), (Pb ⁺² , Ag ⁺ , Hg2 ⁺²) which are NOT soluble.
4.	All fluoride (F ⁻) salts are SOLUBLE - EXCEPT those also containing: magnesium, calcium, strontium, barium, or lead
	(Mg ⁺² , Ca ⁺² , Sr ⁺² , Ba ⁺² , Pb ⁺²) which are NOT soluble.
5.	All sulfate (SO ₄ ⁻²) salts are SOLUBLE - EXCEPT those also containing: calcium, silver, mercury (I), strontium, barium, or lead
	$(Ca^{+2}, Ag^+, Hg_2^{+2}, Sr^{+2}, Ba^{+2}, Pb^{+2})$, which are NOT soluble.
	Not Soluble Ionic Compounds
6.	Hydroxide (OH) and oxide (O ²) compounds are NOT SOLUBLE - EXCEPT those also containing: sodium, potassium or barium (Na ⁺ , K ⁺ , Ba ⁺²), which are soluble.
7.	Sulfide (S ⁻²) salts are NOT SOLUBLE - EXCEPT those also containing:
	sodium, potassium, ammonium, or barium (Na ⁺ , K ⁺ , NH4 ⁺ , Ba ⁺²), which are soluble.
8.	Carbonate (CO3-2) and phosphate (PO4-3) salts are NOT SOLUBLE EXCEPT those also containing:
	sodium, potassium or ammonium (Na+, K+, NH4+) which are soluble.

Assigning Oxidation Numbers

This is a more complete set of rules than your text book. It always works.

Use these rules in order.

The sum of all oxidation numbers of all elements = charge on substance

		Oxidation Number:
1.	Atoms in their elemental state	0
2.	Monatomic ions	Charge

IN COMPOUNDS

Group 1A	+1
Group 2A	+2
Fluorine	-1
Hydrogen	+1
Oxygen	-2
Group 7A	-1
Group 6A	-2

				Singl	e Bon	ds				
Н	С	N	0	F	Si	Р	S	Cl	Br	I
436	414	389	464	569	293	318	339	431	368	297
	347	293	351	439	289	264	259	330	276	238
		159	201	272		209		201	243?	
			138	184	368	351		205		201
				159	540	490	285	255	197?	
					176	213	226	360	289	
						213	230	331	272	213
							213	251	213	
								243	218	209
									192	180
										151
			Μ	ultiple	Bond	s				
N=	N		418	C=	=C			61	1	
N	N	9	946	C≡	≡C			83	7	
N=0	С		590	C=	=O (in	0=0	C=O	80	3	
C≡]	N	8	891	C=	=O (as	s in H	$_{2}C = C$) 74	5	
O =	O (in	O_2) 4	498	C≡	≡O		3	107.	5	

Name:	ID:
10	Some Average Single- and Multiple-Bond Energies*

Other Information For Your Use:

Zinc = Zn Lead = Pb C	Copper = Cu	Silver = Ag
-----------------------	-------------	-------------

Question 11. When aqueous solutions of zinc(II) sulfate and lead(II) nitrate are combined a
precipitate results. What is the formula for the precipitate?

2. When aqueous solutions of **copper(II)** iodide and **silver(I)** acetate are combined a precipitate results. What is the formula for the precipitate?

Question 2 (16 Points) 1. Consider the reaction when aqueous solutions of NiNO₃ and Ba(OH)₂ are combined. The net ionic equation for this reaction is:

2. Consider the reaction when aqueous solutions of **sodium sulfide** and **copper(II) nitrate** are combined. The net ionic equation for this reaction is:

3. Write a net ionic equation for the reaction that occurs when aqueous solutions of **NaOH** and **HCI** are combined.

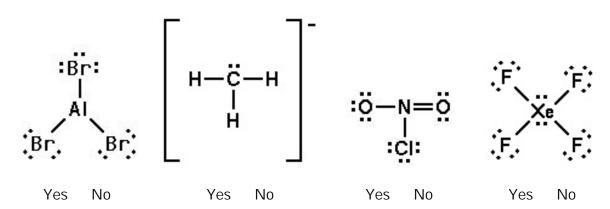
4. Write a net ionic equation for the reaction that occurs when aqueous solutions of **KOH** and **HF** are combined.

Name:	ID:
Question 3 (9 Points)	What is the oxidation state of:
e	nitrogen in NO_3^- ? carbon in $H_2C_2O_4$?
Do Not Write Her	oxygen in O ₂ ?
Question 4 (12 Points)	I dentify the species oxidized, the species reduced, the oxidizing agent and the reducing agent in the following electron transfer reaction.
	$CI_2 + 2 Cr^{2+} = 2 CI^- + 2 Cr^{3+}$
Do Not Write Here	 species oxidized: species reduced:
	3. oxidizing agent:
	4. reducing agent:
	5. During the reaction, electrons are transferred from to
Question 5 (16 Points)	1. What is the complete electron configuration for the lithium atom?
	2. What is the complete electron configuration for the aluminum ion ?
ot ere	3. What is the valence electron configuration for the silicon atom?
Do Not Write Here	4. What is the valence electron configuration for the chloride ion?
	 A main group element with the valence electron configuration 2s²2p³ is in periodic group It forms a monatomic ion with a charge of
	 A main group element with the valence electron configuration 2s¹ is in periodic group It forms a monatomic ion with a charge of

Question 6 Consider the following elements:

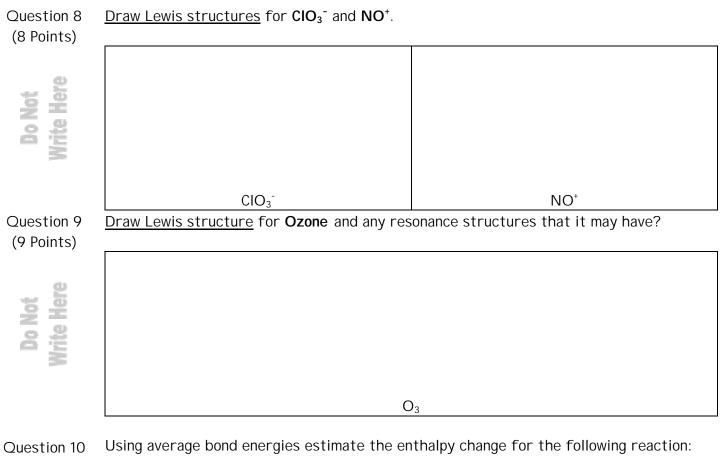
(8 Points)

Sb, As, Bi, P


- 1. Which would you expect to have the smallest atomic radius?
- 2. Which would you expect to be most metallic?
- Which would you expect to have the largest ionization energy? 3.
- 4. Which would you expect to be least electronegative?

Consider the following elements:

Se, Ge, As, Br

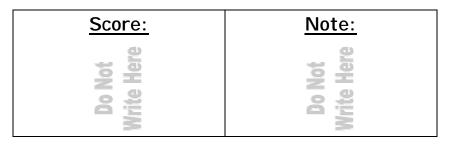

- Which would you expect to have the smallest atomic radius? 1.
- 2. Which would you expect to be most metallic?
- Which would you expect to have the smallest ionization energy? 3.
- 4. Which would you expect to be most electronegative?

Question 7 From the Lewis diagrams of the species given, pick all of those in which the central atom (8 Points) obeys the octet rule.

Name:

ID: _____ - ___ -

 $2H_2(g) + O_2(g) = 2H_2O(g)$


Do Not Write Here

(8 Points)

The reaction is (Circle One):

Exothermic

Endothermic

