

$\begin{gathered} \hline \mathrm{Ce} \\ 58 \\ 140.12 \end{gathered}$	$\begin{aligned} & \hline \mathrm{Pr} \\ & \hline 59 \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{Nd} \\ 60 \end{array}$	$\begin{array}{\|c\|} \hline \text { Pm } \\ 61 \\ (145) \end{array}$	$\underset{62}{\mathrm{Sm}}$	$\begin{array}{\|c\|} \hline \mathrm{Eu} \\ 63 \\ \hline \end{array}$	$\underset{64}{\mathrm{Gd}}$	$\underset{65}{\mathrm{~Tb}}$	$\begin{aligned} & \hline \text { Dy } \\ & 66 \end{aligned}$	$\begin{aligned} & \mathrm{Ho} \\ & 67 \end{aligned}$	$\begin{aligned} & \mathrm{Er} \\ & \hline 68 \end{aligned}$	Tm_{69}	$\begin{aligned} & \mathrm{Yb} \\ & 70 \end{aligned}$	Lu_{71}
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	m	Md	No	Lr
90	91	92	93	94	95	96		98	99	100	101	102	103
2.04	11.0	88.0	. 05	(240)	243.06	(247)	(248)	(251)	252.0	57.1	(257)	259	

Some Approximate Single and Multiple Bond Lengths*

Single Bond Lengths

	H	C	N	O	F	Si	P	S	Cl	Br	I
H	74	110	98	94	92	145	138	132	127	142	161
C		154	147	143	141	194	187	181	176	191	210
N			140	136	134	187	180	174	169	184	203
O				132	130	183	176	170	165	180	199
F					128	181	174	168	163	178	197
Si						234	227	221	216	231	250
P							220	214	209	224	243
S								208	203	218	237
Cl									200	213	232
Br										228	247
I											266
			Multiple Bond Lengths								
			$\mathrm{C}=\mathrm{C}$			$\mathrm{C} \equiv \mathrm{C}$	121				
			$\mathrm{C}=\mathrm{N}$			$\mathrm{C} \equiv \mathrm{N}$	115				
			$\mathrm{C}=\mathrm{O}$			$\mathrm{C} \equiv \mathrm{O}$	113				
			$\mathrm{N}=\mathrm{O}$			$\mathrm{N} \equiv \mathrm{O}$	108				

*In picometers (pm); $1 \mathrm{pm}=10^{-12} \mathrm{~m}$.

Last: First:

Circle the correct answers to the following questions, which relate to the orbital depicted on the left.

1. The orbital depicted is an $\mathbf{s}, \mathbf{p}, \mathbf{d}, \mathrm{f}$ or g orbital.
2. The principal quantum number for this orbital cannot be: 234
3. The likely specific designation for this orbital:
$2 s, 3 s, 2 p_{x}, 2 p_{y}, 2 p_{z}, 3 p_{x}, 3 p_{y}, 3 p_{z}, 2 d_{x y}, 2 d_{x z}$, $2 d_{y z}, 2 d_{z 2}, 2 d_{x 2-y 2}, 3 d_{x y}, 3 d_{x z}, 3 d_{y z}, 3 d_{z 2}, 3 d_{x 2-y 2}$

Question 2

Question 3 6 Points

Question 4 8 Points

Label the following atom/ions as either paramagnetic (P) or diamagnetic (D):

1. Be
2.
3.

\qquad

With respect to the elements, $\mathrm{Rb}, \mathrm{Cs}, \mathrm{K}$ and Na :
A. Which element would you expect to have the smallest atomic radius?
B. Which element would you expect to be most metallic?
C. Which element would you expect to have the largest ionization energy? \qquad
D. Which element would you expect to be least electronegative?

SID: \square Last: First:

Question 8	Draw the three resonance structures for $\mathrm{CO}_{3}{ }^{2-}$.
$$	
Question 10 5 Points	The anticipated Carbon to Oxygen bond length in $\mathrm{CO}_{3}{ }^{2-}$ is: (check the correct answer) \qquad 143pm \qquad between 143pm and 122pm \qquad 122 pm \qquad between 122pm and 113pm \qquad 113pm
Question 11 12 Points	Give the correct name for the following straight chain alkane, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ \qquad
$\begin{aligned} & \text { 흔 } \\ & \text { 흔 } \\ & \text { 옹 흔 } \\ & \hline \end{aligned}$	on the left represent the same molecule. Circle the structure that does not match the others
$\begin{aligned} & \text { 흔 } \\ & \text { 훌 } \\ & \text { 옹 흔 } \end{aligned}$	 Fill in the missing portions of the correct name given below for the molecule depicted on the left. _-methyl \qquad ane

