H	The Periodic Table												He 2				
1.01	IIA											IIIA	IVA	VA	VIA	VIIA	4.00
Li	Be											В	С	N	0	F	Ne
3	4											5	6	7	8	9	10
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
Na	Mg											Al	Si	P	S	CI	Ar
11	12											13	14	15	16	17	18
22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	IB	IIB	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Ta	W	Re	Os	lr.	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
87	88	89	104	105	106	107	108	109									
223.02	226.03	227.03	(261)	(262)	(263)	(262)	(265)	(266)									

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
140.12	140.91	144.24	(145)	150.36	152.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103
232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Some Approximate Single and Multiple Bond Lengths*

_	Single Bond Lengths											
200	Н	С	N	О	F	Si	P	s	Cl	Br	I	
H	74	110	98	94	92	145	138	132	127	142	161	
C		154	147	143	141	194	187	181	176	191	210	
N			140	136	134	187	180	174	169	184	203	
O				132	130	183	176	170	165	180	199	
F					128	181	174	168	163	178	197	
Si						234	227	221	216	231	250	
P							220	214	209	224	243	
S								208	203	218	237	
Cl									200	213	232	
Br										228	247	
I											266	
			1	5								
			C=C	134		C≡C	121					
			C=N	127		C≡N	115					
			C=O	122		C≡O	113					
			N=O	115		N≡O	108					

^{*}In picometers (pm); $1 \text{ pm} = 10^{-12} \text{ m}$.

SID:	Last: First:
Question 1 6 Points	Circle the correct answers to the following questions, which relate to the orbital depicted on the left. 1. The orbital depicted is an s, p, d, f or g orbital. 2. The principal quantum number for this orbital cannot be: 2 3 4 3. The likely specific designation for this orbital: 2s, 3s, 2p _x , 2p _y , 2p _z , 3p _x , 3p _y , 3p _z , 2d _{xy} , 2d _{xz} , 2d _{yz} , 2d _{z2} , 2d _{x2-y2} , 3d _{xy} , 3d _{xz} , 3d _{yz} , 3d _{z2} , 3d _{x2-y2}
Question 2 18 Points	 Write the complete electronic configuration for the following: Sodium atom Oxide ion Oxide ion What is the valence electron configuration for: Phosphorus atom Bromide ion 3. How many valence electrons do the following have: Zenon (Xe) Li⁺ 4. A main group element with the valence electron configuration 3s²3p⁴ is in periodic group It forms a monatomic ion with a charge of The symbol for this element is
Question 3 6 Points	Label the following atom/ions as either paramagnetic (P) or diamagnetic (D): 1. Be 2. C 3. F
Question 4 8 Points	With respect to the elements, Rb, Cs, K and Na: A. Which element would you expect to have the smallest atomic radius? B. Which element would you expect to be most metallic? C. Which element would you expect to have the largest ionization energy? D. Which element would you expect to be least electronegative?

Question 5
8 Points

Do Not Write Here With respect to the elements, B, Li, Be and C:

A. Which element would you expect to have the smallest atomic radius?

B. Which element would you expect to be most metallic?

- C. Which element would you expect to have the smallest ionization energy?
- D. Which element would you expect to be most electronegative?

Question 6
12 Points

a) Ö=C=Ö

With respect to the Lewis Dot Structures depicted on the left: (Circle the correct letter)

1. Identify all whose central atom obeys the octet rule.

a b c d

- Identify all whose central atom has more than an octet.
 a
 b
 c
 d
- 3. Identify the structure whose central atom has the greatest number of bond pair electrons.

a b c d

- Identify the structure that has the least number of lone pair electrons.
 a b c d
- Identify the structure(s) that have resonance
 structures.
 a
 b
 c
 d

Question 7

Draw the Lewis Dot Structure for each of the following molecules:

Vrite Here

H₂CO

CIO₃

NHF₂

Do Not Vrite Here BF₃