Chem 110 Fall 2002 Exam I I I

H	The Periodic Table										VIIIA He						
1.01	IIA											IIIA	IVA	VA	VIA	VIIA	4.00
Li	Be											В	C	N	0	F	Ne
3	4											5	6	7	8	9	10
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
Na	Mg											Al	Si	P	S	CI	Ar
11	12	200	1100000	11.00	77.43	V-44-4-1	t watering	N 2000-16	V 200 V 200	Carrier T	I lawrence	13	14	15	16	17	18
22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	IB .	IIB	26.98	28.09	30.97	32.07	35.45	
K	Ca	Sc	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95		186.21		192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
87	88	89	104	105	106	107	108	109									
223.02	226.03	227.03	(261)	(262)	(263)	(262)	(265)	(266)									

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
140.12	140.91	144.24	(145)	150.36	152.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103
232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Question 1 (9 points)	Using average bond energies the enthalpy change associated with the following reaction: $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(aq)$ Was determined to be -93 kJ.mol ⁻¹ . Knowing that the ΔH^0_f of for the elements in their standard state is 0 and ΔH^0_f NH $_3(aq)$ = -80 kJ.mol ⁻¹ . Using heats of formation data, determine the enthalpy change for the reaction.							
Do Not Write Here	Give a simple explanation for the difference in values obtained. Which value do you think is closer to the real value?							
Question 2 (24 points)	·	g molecules give the electron-pair geometry, the number of lone atom and the molecular geometry .						
	,	electron-pair geometry						
		lone pairs						
		molecular geometry						
	B. NO ₂ ⁺	electron-pair geometry						
Not Here		lone pairs						
Do	C. NF ₃ ?	molecular geometry						
-	C. INF3!	electron-pair geometry						
		lone pairs						
		molecular geometry						
	D. CS ₂	electron-pair geometry						
		lone pairs						

molecular geometry

Questic	n 3
(Q noin	tc)

Classify each of the following molecules as **Polar** or **Non Polar**.

A. NO₃

B. NO₂⁺

C. NF₃

D. CS₂

Question 4 (10 Points)

Circle the intermolecular forces that are applicable to the following:

A. The solute-solvent interactions when **calcium chloride** dissolves in water are primarily of the type:

dipole-induced dipole ion-dipole ion-ion dipole-dipole hydrogen bonding

B. The solute-solvent interactions when O_2 dissolves in water are primarily of the type:

dipole-induced dipole ion-dipole ion-ion dipole-dipole hydrogen bonding

C. The type(s) of intermolecular forces expected between Cl_2 molecules:

dispersion ion-dipole ion-ion dipole-dipole hydrogen bonding

D. The type(s) of intermolecular forces expected between **HF** molecules:

dispersion ion-dipole ion-ion dipole-dipole hydrogen bonding

Circle the molecule that is expected to have the higher boiling point.

CH₄ CH₃OH CH₃CH₃ CH₃CH₂OH CH₃CH₂OH

Question 5 (5 Points)

The equilibrium constant, K_{c} , for the following reaction is ${\bf 1.67x10^{-2}}$ at ${\bf 1180}$ K:

$$2 SO_3(g) \rightleftharpoons 2 SO_2(g) + O_2(g)$$

Calculate $K_{\mbox{\tiny C}}$ at this temperature for:

$$\mathsf{SO}_3(g) \Longrightarrow \mathsf{SO}_2(g) + \mathsf{1}\!\!/_2 \mathsf{O}_2(g)$$

Qu	estion	(
(5	Points)

Consider the following reaction:

$$2 \text{ NO}(g) + \text{Br}_2(g) \rightleftharpoons 2 \text{ NOBr}(g)$$

If 0.580 moles of NOBr(g), 0.567 moles of NO, and 0.446 moles of Br_2 are at equilibrium in a 8.8 L container at 452K, the value of the equilibrium constant

Do Not Write Here

Question 7 (5 Points)

Consider the following system at equilibrium:

$$2 H_2S(g) + 3 O_2(g) \rightleftharpoons 2 H_2O(g) + 2 SO_2(g)$$

The production of H_2O by this reaction would be favored by: (Circle those that apply)

Do Not Write Here

- A. removing H₂S
- **B.** removing SO₂
- \boldsymbol{C} . adding SO_2
- $\textbf{D.} \ \ \text{adding} \ H_2S$
- $\textbf{E.} \ \ \text{adding} \ O_2$

Question 8 (8 Points)

A. The formula for the conjugate acid of ${\rm CO_3}^{\rm 2-}$ is.

B. The formula for the **conjugate base** of HPO_4^{2-} is.

- C. The formula for the conjugate base of H_3PO_4 is
- D. The formula for the conjugate acid of NH₃ is

Question 9 (8 points)

The $[H_3O^+]$ in an aqueous solution is $\mathbf{5.58x10^{-9}}$ M.

Do Not Vrite Here The [OH⁻] in the solution is ______ M.

The pH of this solution is _____ and the pOH is _____.

This solution is ______ . (Acidic or Basic)

Name:

Question 10 (5 points)

You need to make an aqueous solution of **0.160** M **potassium bromide** for an experiment in lab, using a **500** mL volumetric flask. How much solid **potassium bromide** should you add?

Do Not Write Here

Question 11 (6 Points)

According to the following reaction, how many moles of **bromine trifluoride** are necessary to form **0.387** moles **fluorine gas**?

bromine trifluoride $(g) \longrightarrow bromine (g) + fluorine (g)$

Do Not Write Here

Question 12 (7 points)

How many grams of solid **potassium hydroxide** are needed to exactly neutralize **25.1** mL of a **0.642** M **hydrochloric acid** solution ? Assume that the volume remains constant.

Do Not Write Here

Score:	Note:
Do Not	Do Not
Write Here	Write Here