


Electronegativity Values for the Elements


Some Information For Your Use:
The straight-chained hydrocarbons that we have met had the following general formulae:
$\mathrm{C}_{n} \mathrm{H}_{2 n}$
$\mathrm{C}_{n} \mathrm{H}_{2 n+2}$
$\mathrm{C}_{n} \mathrm{H}_{2 n-2}$

Question 1 Answer the following based on the Lewis Dot 16 Point Structure for $\mathrm{SF}_{2}$

1. Number of lone pairs on the central S atom is:
2. The central $S$ atom forms $\qquad$ single bond(s).
3. The central $S$ atom forms $\qquad$ double bond(s).
4. The Lewis structure has two or more resonance structure: True False

Answer the following based on the Lewis Dot Structure for $\mathrm{O}_{3}$
5. Number of lone pairs on the central $O$ atom is:
6. The central $O$ atom forms $\qquad$ single bond(s).
7. The central $O$ atom forms $\qquad$ double bond(s).
8. The Lewis structure has two or more resonance structure: True False

Question 2 Draw the three resonance structures for $\mathrm{NO}_{3}^{-}$.
9 Points


Question 3 Some typical bond lengths are listed below:

| $C-O$ | 143 pm |
| :--- | :--- |
| $C=O$ | 122 pm |
| $C \equiv O$ | 113 pm |

What would you anticipate the C - O bond length to be in $\mathrm{H}_{2} \mathrm{CO}$ $\qquad$ pm

| $\mathrm{N}-\mathrm{O}$ | 136 pm |
| :--- | :--- |
| $\mathrm{N}=\mathrm{O}$ | 115 pm |
| $\mathrm{N} \equiv \mathrm{O}$ | 108 pm |

What would you anticipate the N-O bond length to be in $\mathrm{NO}_{3}$ $\qquad$ pm
Question 4 Saturated hydrocarbons contain only single bonds. Answer the following questions with respect to 10 Points the following molecules.

1. $\mathrm{C}_{5} \mathrm{H}_{12}$
2. $\mathrm{C}_{4} \mathrm{H}_{8}$
3. $\mathrm{C}_{8} \mathrm{H}_{18}$
4. $\mathrm{C}_{6} \mathrm{H}_{10}$
a) A saturated hydrocarbon:
d) An unsaturated hydrocarbon:
e) An alkene:
b) Octane: $\qquad$
c) An alkyne

Question 5
16 Points


D)

E)






The questions below refer to the structural formulas given above for some organic molecules. Give the letter of the structure that depicts:

1. An alcohol
2. An amine $\qquad$
3. A carboxylic acid $\qquad$
4. An aldehyde
5. A ketone
6. An ether
7. Greatest number of lone pairs
8. Greatest number of bond pairs $\qquad$

Question 6 Some typical bond energies in kJ per mole are listed below:
6 Points
$\begin{array}{rr}C-O & 351 \\ C=O & 803 \\ C \equiv O & 1075\end{array}$
Cl-Cl 243
C-Cl 330

Use these values to determine the enthalpy change for the following reaction:

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})=\mathrm{COCl}_{2}(\mathrm{~g})
$$

Question 7
4 Points


The molecule depicted on the left is an unstable intermediate in an organic reaction.
What is the formal charge on:

1. The nitrogen atom.
2. The oxygen atom.

Question 8 16 Points

Give the Electron Pair Geometry (epg) and the Molecular Geometry (mg) for the following molecules:


Question 9
9 Points


A portion of the molecule Novocain is depicted on the left. What are the bond angles about 1,2 and 3?

1. $\qquad$
2. 
3. 

$\qquad$
$\qquad$

Question 10 The molecular geometry for the following five molecules is given below. Label these molecules as 10 Points either Polar or Non Polar.


