Name:

Question 1	An ion from a given element has 16 protons and 18 electrons.			
(5 points)	What is the charge on the ion?			
	What is the name of the element?			
Vot Here	What is the symbol for the ion?			
Do I Nrite	2. For the element K:			
	What is the charge on the ion expected to form?			
	How many electrons are present in the ion?			
Question 2 (3 points)	When the following molecular equations are balanced using the smallest possible in coefficients, the values of these coefficients are:	nteger		
9	1Ca(OH)_2(aq) + HCl (aq) =CaCl_2(aq) + H_2O (I)			
o Not te He	2NO(g) +O ₂ (g) =NO ₂ (g)			
Wri	3 $Fe_2O_3(s) + C(s) = Fe(s) + CO_2(g)$			
Question 3	1. Name the compound with the formula Ca(CN) ₂ ?			
(8 points)	2. Name the compound with the formula NaHCO $_3$?			
Do Not Write He	3. What is the formula for calcium phosphate ?			
	4. What is the formula for sulfur tetrafluoride ?			

Question 4 (5 points)

Do Not Write Here 1. A compound is found to contain 10.85 % silicon, 27.40 % chlorine and 61.75 % bromine by weight. Determine the empirical formula for this compound.

Question 5	Give the Net	Ionic	Equation	for the	reaction	that	occurs:
------------	---------------------	-------	----------	---------	----------	------	---------

(6 points)

1. when aqueous solutions of $Ni(NO_3)_2$ and $Ba(OH)_2$ are combined.

2. when aqueous solutions of sodium sulfide and copper(II) nitrate are combined.

3. When aqueous solutions of ${\bf KOH}$ and ${\bf HF}$ are combined.

Question 6 (3 points)	What is the oxidation state of:					
	oxygen in O_2 carbon in $H_2C_2O_4$ oxygen in H_2O_2					
Question 7 (4 points)	Identify the species oxidized, the species reduced, the oxidizing agent and the reducing agent in the following electron transfer reaction.					
Not e Here	$Cl_2 + 2 Cr^{2+} = 2 Cl^- + 2 Cr^{3+}$					
Do Write	1. species oxidized: 2. oxidizing agent:					
	3. During the reaction, electrons are transferred from to					
Question 8 (4 points)	 Valence electron configuration for the lithium atom? 					
Do Not Write Here	2. Complete electron configuration for the aluminum ion?					
	 A main group element with the valence electron configuration 2s²2p³ is in periodic group It forms a monatomic ion with a charge of 					

Name:

- 2. Repeat the above calculation using Heats of Formation. [The Heat of Formation for $H_2O(I) = -285.8 \text{ kJ.mol}^{-1}$]
 - 3. Account for the difference in the values obtained.

Question 13 (5 Points)	estion 13 For each of the following molecules give (where required) the electro 5 Points) the number of lone pairs around the central atom, the molecular geo whether the molecule is polar or non-polar . A. NO2 ⁻							
	A. 1002	lone	pairs					
Not Here		mole	ecular geome [.]	try				
Do Write		mole	ecular polarit	у				
	B. NO₂⁺	elec	tron-pair geo	ometry				
		mole	ecular polarit	у				
Question 14 (4 Points)	Circle the intermolecular f	orces that a	re applicable	to the following:				
(+101113)	A. The solute-solvent primarily of the type	interactions be:	when potassi	um fluoride disso	olves in water are			
vot Here	dipole-induced dipole	ion-dipole	ion-ion	dipole-dipole	hydrogen bonding			
Do P Vrite	B . The type of intermolecular forces expected between NH_3 molecules:							
220	dipole-induced dipole	ion-dipole	ion-ion	dipole-dipole	hydrogen bonding			
Question 15 (4 Points)	Consider the following sys [.] 2 H The production of SO ₂ by	tem at equilit 2 5(g) + 3 O 2 this reaction	orium: (g) ⇔ 2 H₂C would be fav	D(g) + 2 SO2(g) vored by:				
Question 16 (4 Points)	The $[H_3O^*]$ in an aqueous s	olution is 5.5	5 8×10⁻⁹ M .					
	1. The [OH ⁻] in the so	lution is		M.				
lo No ite H	2. The pH of this solu	tion is	ar	nd the pOH is				
WL	3. This solution is		(Acidic	or Basic)				

Name:

Question 17 According to the following reaction, how many moles of **bromine trifluoride** are (3 Points) necessary to form **0.387** moles **fluorine gas**? **bromine trifluoride** (g) = **bromine** (g) + **fluorine** (g)

Question 18How many grams of solid $Ba(OH)_2$ are needed to exactly neutralize 21.1 mL of a 0.652(5 points)M HCl solution ? Assume that the volume remains constant.

Question 19 Determine the pH of an aqueous solution of **0.457** M hydrocyanic acid, HCN (aq). K_{α} for (5 points) HCN = 4×10⁻¹⁰ at 298K

Do Not Write Here Question 20 A buffer solution contains 0.367 M KCN and 0.457 M HCN. Determine the pH of this (5 points) buffer solution.

	Ð
ы	
2	-
	2
	ž

×	
Ž	Ð
	Ξ

A. The	number of	f moles of f	-ICN will increas	5 e .	
B . The	number of	f moles of (CN⁻ will remain	the same.	

C. The equilibrium concentration of H_3O^+ will decrease.

U. The primin increase.	D.	The	pН	will	increase.
-------------------------	----	-----	----	------	-----------

Classify each of the compounds below with the functional group classification given. Question 22 (5 points)

Vot	Here
	Write

Alcohol Carboxylic Acid Amine Aldehyde Ketone Ether $C_6H_5CH_2NH_2$ CH₃CH₂CHO C₆H₅COOH CH₃COCH₃

CH₃OCH₃

Score:	
Do Not Write Here	