Name:

Question 1 (5 points)

Question 2 (3 points)

Question 3 (8 points)
훟
읗
흘

Question 4 (5 points)

1. An ion from a given element has 16 protons and 18 electrons.

What is the charge on the ion?

What is the name of the element?

What is the symbol for the ion?
2. For the element K :

What is the charge on the ion expected to form?
How many electrons are present in the ion?

When the following molecular equations are balanced using the smallest possible integer coefficients, the values of these coefficients are:

1. $\ldots \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\ldots \mathrm{HCl}(\mathrm{aq})=\ldots \mathrm{CaCl}_{2}(\mathrm{aq})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
2. $\ldots \mathrm{NO}(\mathrm{g})+\ldots \mathrm{O}_{2}(\mathrm{~g})=\ldots \mathrm{NO}_{2}(\mathrm{~g})$
3. $\ldots \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\ldots \mathrm{C}(\mathrm{s})=\ldots \mathrm{Fe}(\mathrm{s})+\ldots \mathrm{CO}_{2}(\mathrm{~g})$
4. Name the compound with the formula $\mathrm{Ca}(\mathrm{CN})_{2}$?
5. Name the compound with the formula NaHCO_{3} ?
6. What is the formula for calcium phosphate?
7. What is the formula for sulfur tetrafluoride?
8. A compound is found to contain 10.85% silicon, 27.40% chlorine and 61.75% bromine by weight. Determine the empirical formula for this compound.

Question 5 (6 points)

Give the Net Ionic Equation for the reaction that occurs:

1. when aqueous solutions of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{Ba}(\mathrm{OH})_{2}$ are combined.
2. when aqueous solutions of sodium sulfide and copper(II) nitrate are combined.
3. When aqueous solutions of KOH and HF are combined.

Question 6 (3 points)

Question 7 (4 points)

Question 8 (4 points)

What is the oxidation state of:
oxygen in O_{2}
carbon in $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ \qquad oxygen in $\mathrm{H}_{2} \mathrm{O}_{2}$ \qquad
Identify the species oxidized, the species reduced, the oxidizing agent and the reducing agent in the following electron transfer reaction.

$$
\mathrm{Cl}_{2}+2 \mathrm{Cr}^{2+}=2 \mathrm{Cl}^{-}+2 \mathrm{Cr}^{3+}
$$

1. species oxidized: \qquad 2. oxidizing agent: \qquad
2. During the reaction, electrons are transferred from \qquad to \qquad
3. Valence electron configuration for the lithium atom? \qquad
4. Complete electron configuration for the aluminum ion? \qquad
5. A main group element with the valence electron configuration $2 s^{2} 2 p^{3}$ is in periodic group \qquad . It forms a monatomic ion with a charge of \qquad —.

Name:

Question 9 Consider the following elements: (4 points)

Se, $\mathrm{Ge}, \mathrm{As}, \mathrm{Br}$

1. Which would you expect to have the smallest atomic radius?
2. Which would you expect to be least metallic?
3. Which would you expect to have the largest ionization energy?
4. Which would you expect to be most electronegative?

Question 10 Draw Lewis structures for chlorate ion and NO^{+}. (4 Points)

Chlorate ion	

Question 11
Draw Lewis structure for NO_{2}^{-}and any resonance structures that it may have? (4 Points)

Question 12 (6 Points)

1. Using average bond energies estimate the enthalpy change for the following reaction: $\quad 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
2. Repeat the above calculation using Heats of Formation. [The Heat of Formation for $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})=-285.8{\mathrm{~kJ} . \mathrm{mol}^{-1}}$]
3. Account for the difference in the values obtained.

Question 13 For each of the following molecules give (where required) the electron-pair geometry,

Question 15 (4 Points) the number of lone pairs around the central atom, the molecular geometry and indicate whether the molecule is polar or non-polar.
A. $\mathrm{NO}_{2}{ }^{-}$
lone pairs
molecular geometry
molecular polarity
B. $\mathrm{NO}_{2}{ }^{+}$

$$
\begin{aligned}
& \text { electron-pair geometry } \\
& \text { molecular polarity }
\end{aligned}
$$

\qquad
\qquad
\qquad

Circle the intermolecular forces that are applicable to the following:
A. The solute-solvent interactions when potassium fluoride dissolves in water are primarily of the type:
dipole-induced dipole ion-dipole ion-ion dipole-dipole hydrogen bonding
B. The type of intermolecular forces expected between NH_{3} molecules:
dipole-induced dipole ion-dipole ion-ion dipole-dipole hydrogen bonding

Consider the following system at equilibrium:
$2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{SO}_{2}(\mathrm{~g})$
The production of SO_{2} by this reaction would be favored by:

Question 16 The $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in an aqueous solution is $5.58 \times 10^{-9} \mathrm{M}$.

1. The $\left[\mathrm{OH}^{-}\right]$in the solution is \qquad M.
2. The pH of this solution is \qquad and the pOH is \qquad .
3. This solution is \qquad . (Acidic or Basic)

Name:

Question 17 According to the following reaction, how many moles of bromine trifluoride are (3 Points) necessary to form 0.387 moles fluorine gas? bromine trifluoride $(g)=$ bromine $(g)+$ fluorine (g)

Question 18 How many grams of solid $\mathrm{Ba}(\mathrm{OH})_{2}$ are needed to exactly neutralize 21.1 mL of a 0.652 (5 points) $\quad \mathrm{M} \mathrm{HCl}$ solution? Assume that the volume remains constant.

Question 19 Determine the pH of an aqueous solution of 0.457 M hydrocyanic acid, HCN (aq). K for (5 points) $\quad \mathrm{HCN}=4 \times 10^{-10}$ at 298 K

Question 20 A buffer solution contains 0.367 M KCN and 0.457 M HCN . Determine the pH of this (5 points) buffer solution.

Question 21 A 1.00 liter solution contains 0.457 M HCN and 0.367 M KCN . If 0.13 moles of NaOH (4 points) are added to this system, indicate whether the following statements are TRUE or FALSE. (Assume that the volume does not change upon the addition of NaOH .)
A. The number of moles of HCN will increase.
B. The number of moles of CN^{-}will remain the same.
C. The equilibrium concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$will decrease.
D. The pH will increase.

Question 22 Classify each of the compounds below with the functional group classification given. (5 points)

Alcohol Carboxylic Acid Amine Aldehyde Ketone Ether
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NH}_{2}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ \qquad $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
$\mathrm{CH}_{3} \mathrm{OCH}_{3}$

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}
$$

\qquad
\qquad

Score:

