

Question 1	Give the correct chemical name for the following ionic compounds.								
4 Points	1. FeCO3								
	2. NH ₄ NO ₂								
	3. Mg(ClO ₄) ₂								
	4. BaSO4								
Question 2	When the following chemical equations are balanced using the smallest possible integer coefficients								
4 Points	the values of these coefficients are:								
	1NO(g) +O ₂ (g) =NO ₂ (g)								
	2 Fe ₂ O ₃ (s) + _ C(s) = _ Fe(s) + _ CO ₂ (g)								
Question 3 6 Points	 What is the complete electron configuration for the following: sulfur atom: fluoride ion: What is the valence electron configuration for the following: 								
	calcium atom:								
	3. A main group element with a valence electron configuration $3s^23p^1$ is in group								
Question 4	From the following list, circle one element (if there is one) that is diamagnetic.								
3 Points	Li Be B C N O F Ne								
Question 5	Chlorine has two naturally occurring isotopes:								
4 Points	Exact Mass Abundance								
	³⁵ 17Cl 34.968853 amu 75.77%								
	³⁷ ₁₇ Cl 36.965903 amu 24.23%								
	What is the average atomic mass of Cl?								

Average Atomic Mass: _____

Empirical formula: _____

Question 7	Consider the following elements:									
6 Points	Si	S	Cl	Al	Ρ					
	1. Wł	Cl								
	2. Wł	nich eleme	nt would	you e>	<pect td="" to<=""><td>have the</td><td>greates</td><td>t metallic character?</td><td>Al</td></pect>	have the	greates	t metallic character?	Al	
	3. Which element would you expect to have the largest ionization energy?								Cl	
Question 8 4 Point	Answer the	e following	based o	n the l	Lewis Do	ot Struct	ure for (D ₃		
	1. Numb	per of lone	pairs or	the c	entral C) atom is:		_		
	2. The central O atom forms single bond(s).									
	3. The central O atom forms <u>double bond(s)</u> .									
	4. The L	ewis struc	cture has	s two c	or more	resonance	2			
	struc	ture.		(Circ	cle)	True	False			
Question 9 4 Points	Some typic	cal bond er	nergies in	n kJ pe	er mole (are listed	below:			
		С-О	351			CI-CI	243			
		C=O	803			C-Cl	330			
		C≡O	1075							
	Use these	values to a	determir	e the	enthalpy	/ change t	for the f	ollowing reaction:		

 $CO(g) + Cl_2(g) = COCl_2(g)$

Question 14 The molecular geometry for the following five molecules is given below. Label these molecules as either Polar or Non Polar.

1. CF4	Tetrahedron	
2. CH_2CI_2	Tetrahedron	
3. H₂CO	Trigonal Planar	
4. N ₂	Linear	
5. HCN	Linear	

Question 15 Classify each of the following substances: 6 Points

1.	HF	 A) Strong Acid
2.	NaI	 B) Weak Acid
3.	NH ₃	 C) Strong Base
4.	HCI	 D) Weak Base
5.	NaOH	 E) Soluble Salt
6.	$Cr_3(PO_4)_2$	F) Insoluble Salt

Question 16 The $[H^+]$ in an aqueous solution is found to be 5.43×10^{-9} M. 3 Points

1.	The pH of this solution is:	

- 2. The [OH⁻] of this solution is:
- 3. The solution is (circle one) Basic Acidic Neutral

Question 17What is the expected pH of an aqueous solution of 0.622M hydrocyanic acid (HCN) at $25^{\circ}C$?3 PointsKa HCN = 4.0×10^{-10} at $25^{\circ}C$.

Question 18 4 Points	Give the net ionic equation for the following reactions:						
	1. NaOH(aq) + HNO2(aq)						
	2. NH3(aq) + HCl(aq)						

Question 19 The addition of 0.012 moles of HBr to a 1L buffer solution made from 0.316M HF and 0.204M NaF 5 Points would result in:

	1.	рН	Increase	Decrease	No Change			
Question 20 4 Points	2.	[H₃O⁺]	Increase	Decrease	No Change			
	3.	[F ⁻]	Increase	Decrease	No Change			
	4.	[HF]/[F ⁻]	Increase	Decrease	No Change			
	5.	The maximum	amount of HBr [.]	that this buffer	r could withstan	d is	_moles.	
	The re	action	$H_2(g) + I_2(g) \Leftrightarrow 2HI(g)$		K = 55.6	∆H ⁰ =-10 kJ/mol @ 696K		@ 696K.
	1.	The reaction is	s product favore	ed.		True	False	
	The pr	oduction of HI(g) is favor by:					
	1.	Decreasing the	e temperature.			True	False	
	2.	Decreasing the	e volume.			True	False	
	3.	Adding I_2				True	False	

Question 21 How many grams of solid **sodium hydroxide** are needed to exactly neutralize **27.6** mL of a **1.68** M **sulfuric acid** solution? Assume that the volume remains constant.