
Name

8 Digit ID Number:

	Acid Name	Acid	Ka	Base	$K_{ m b}$	Base Name
	Perchloric acid	HClO ₄	large	ClO ₄ ⁻	very small	perchlorate ion
	Sulfuric acid	H_2SO_4	large	HSO_4^-	very small	hydrogen sulfate ion
	Hydrochloric acid	HCl	large	Cl ⁻	very small	chloride ion
	Nitric acid	HNO_3	large	NO ₃ ⁻	very small	nitrate ion
	Hydronium ion	H_3O^+	1	H_2O	1 x 10 ⁻¹⁴	water
	Sulfurous acid	H_2SO_3	1.2×10^{-2}	HSO3 ⁻	8.3×10^{-13}	hydrogen sulfite ion
	Hydrogen sulfate ion	HSO_4^-	1.2×10^{-2}	SO_4^{2-}	8.3×10^{-13}	sulfate ion
	Phosphoric acid	H_3PO_4	7.5×10^{-3}	$H_2PO_4^-$	1.3×10^{-12}	dihydrogen phosphate ion
	Hexaaquairon(III) ion	${\rm Fe}({\rm H_2O})_6^{3+}$	6.3×10^{-3}	$Fe(H_2O)_5OH^{2+}$	$1.6 imes 10^{-12}$	pentaaquahydroxoiron(III)
	Hydrofluoric acid	HF	7.2×10^{-4}	F^{-}	$1.4 imes 10^{-11}$	fluoride ion
	Nitrous acid	HNO_2	4.5×10^{-4}	NO ₂ ⁻	2.2×10^{-11}	nitrite ion
	Formic acid	HCO ₂ H	1.8×10^{-4}	HCO ₂ ⁻	5.6×10^{-11}	formate ion
	Benzoic acid	C ₆ H ₅ CO ₂ H	6.3×10^{-5}	C ₆ H ₅ CO ₂ ⁻	1.6×10^{-10}	benzoate ion
	Acetic acid	CH ₃ CO ₂ H	1.8×10^{-5}	CH ₃ CO ₂ ⁻	5.6×10^{-10}	acetate ion
	Propanoic acid	CH ₃ CH ₂ CO ₂ H	1.3×10^{-5}	CH ₃ CH ₂ CO ₂ -	7.7×10^{-10}	propanoate ion
	Hexaaquaaluminum	$Al(H_2O)_6^{3+}$	7.9×10^{-6}	$\mathrm{Al}(\mathrm{H}_{2}\mathrm{O})_{5}\mathrm{OH}^{2+}$	1.3×10^{-9}	pentaaquahydroxoaluminum
	Carbonic acid	H.CO.	4.9×10^{-7}	HCO.=	9.4×10^{-8}	hydrogen carbonate ion
	Hevasquacopper(II)	$\Gamma_2(O_3)$ $\Gamma_2(H,O)^{2+}$	1.6×10^{-7}	$C_{\rm H}({\rm H},{\rm O})_{\rm O}{\rm H}^+$	6.95×10^{-8}	pentaaguabudrovocopper/II)
	ion	$Gu(H_2O)_6$	1.0 ~ 10	Gu(H2O)5011	0.20 ~ 10	ion
	Hydrogen sulfide	H_2S	1×10^{-7}	HS ⁻	1×10^{-7}	hydrogen sulfide ion
	Dihydrogen phosphate	$H_2PO_4^-$	6.2×10^{-8}	HPO4 ²⁻	1.6×10^{-7}	hydrogen phosphate ion
	Hydrogen sulfite ion	HSO ₉ ⁻	6.2×10^{-8}	SO,2-	1.6×10^{-7}	sulfite ion
	Hypochlorous acid	HCIO	3.5×10^{-8}	CIO-	2.9×10^{-7}	hypochlorite ion
	Hexaaqualead(II) ion	$Pb(H_2O)_6^{2+}$	1.5×10^{-8}	$Pb(H_2O)_5OH^+$	$6.7 imes 10^{-7}$	pentaaquahydroxolead(II)
	Hexaaquacobalt(II) ion	${\rm Co}({\rm H_2O})_6{}^{2+}$	1.3×10^{-9}	$\mathrm{Co}(\mathrm{H_2O})_5\mathrm{OH^+}$	$7.7 imes 10^{-6}$	pentaaquahydroxocobalt(II)
	Boric acid	B(OH) ₃ (H ₂ O)	7.3×10^{-10}	B(OH) ₄ ⁻	1.4×10^{-5}	tetrahydroxoborate ion
	Ammonium ion	NH_4^+	5.6×10^{-10}	NH ₃	1.8×10^{-5}	ammonia
	Hydrocyanic acid	HCN	4.0×10^{-10}	CN ⁻	2.5×10^{-5}	cyanide ion
	Hexaaquairon(II) ion	$\mathrm{Fe}(\mathrm{H_{2}O)_{6}}^{2+}$	3.2×10^{-10}	$Fe(H_2O)_5OH^+$	3.1×10^{-5}	pentaaquahydroxoiron(II)
	Hydrogen carbonate	HCO_3^-	4.8×10^{-11}	CO_3^{2-}	2.1×10^{-4}	carbonate ion
	Hexaaquanickel(II) ion	$\mathrm{Ni}(\mathrm{H_{2}O)_{6}}^{2+}$	2.5×10^{-11}	$Ni(H_2O)_5OH^+$	$4.0 imes 10^{-4}$	pentaaquahydroxonickel(II)
	Hydrogen phosphate	$\mathrm{HPO_4}^{2-}$	3.6×10^{-13}	PO_4^{3-}	2.8×10^{-2}	phosphate ion
	Water	но	1 × 10-14	OU-	1	hudrouido ion
	Undrogen auffide ion*	H20 US-	1×10^{-19}	S2-	1×10^{5}	sulfide ion
	Fiberel	C L OL	1 × 10 ···	CHO-	1 × 10	sunde ion
	Ammonio	NUL.	very small	NIL -	large	etnoxide ion
	Ammonia	INFI 3	very small		large	annue ion
	Mathema		very small	CII =	large	myuhae ion
	Methane	CH_4	very small	CH_3	large	methide ion

Question 1 Which of the following reactions are expected to go almost to completion (> 99% complete)? Check all that apply.

ASSUME ALL SPECIES in AQUEOUS SOLUTION, (aq), unless noted.

- Question 2 Calculate the pH of a 0.25 M solution of propanoic ($CH_3CH_2CO_2H$) acid. ^{6 Points}

Question 3 Calculate the pH of a solution prepared by mixing 0.35 mol propanoic acid and 0.25 mol sodium propanoate (NaCH₃CH₂CO₂) to create 1.00 liters of solution.

Question 4 Which of the following mixtures will result in a buffer solution. Check all that apply. 5 Points

Mixing 0.20 mol formic acid (HCO₂H) and 0.80 mol sodium formate with 1 liter of water.

_____ Mixing 0.20 mol formic acid and 0.80 mol HCl with 1 liter of water.

_____ Mixing 0.20 mol formic acid and 0.80 mol NaOH with 1 liter of water.

_____ Mixing 0.80 mol formic acid and 0.20 mol NaOH with 1 liter of water.

_____ Mixing 0.20 mol HCl and 0.80 mol sodium formate with 1 liter of water.

Question 5 For each of the following salts, indicate if a solution of the salt will be acidic (A), basic ^{10 Points} (B), or neutral (N).

- ____ NaHCO₂
- ____ NaCN
- ____ NaBr
- _____ NH₄NO₃
- ____ (NH₄)₂SO₃

Question 6 For each of the following indicate if the species could act as a Lewis acid (A), a Lewis ^{10 Points} basic (B), or neither (N). If something can act as either an acid or a base, indicate both.

Question 7 Draw the product of the Lewis acid base reaction that occurs between these two species.

Question 8 We have 1.00 L of a solution containing 0.45 M propanoic acid $(CH_3CH_2CO_2H)$ and 0.30 M sodium propanoate $(NaCH_3CH_2CO_2)$. To this solution we add 0.15 mol NaOH.

What is the pH of the resulting solution?

Question 9 The below plot is a pH titration of an solution of an acid, **HA**, to which a solution of ^{12 Points} NaOH was added. Answer each of the guestions about the titration.

- a. Is the acid titrated a strong acid or a weak acid?
- b. For each of the numbered points in the titration, indicate what the nature of the solution is (e.g. strong acid, strong base, buffer, weak acid, weak base, neutral salt).

1	2
3	4

- c. What is the approximate value of K_a of the acid, HA?
- Question 10Use the K_{sp} value to estimate the solubility of CaF_2 , in mol/L.6 Points $K_{sp} CaF_2(s) @ 298K = 5.3 \times 10^{-11}$

Question 11 What is the solubility of CaF_2 in a solution that also contains 0.50 M NaF? 7 Points

- Question 12 ^{10 Points} Cu(OH)₂ is a slightly soluble salt, as evidenced by its small value of Ksp. Suppose we had a saturated solution of copper(II) hydroxide with an excess of the solid at the bottom of the beaker. To this solution we add other chemicals. Indicate whether addition of each of the following species would increase (I) the solubility, decrease (D) the solubility, or have no (N) effect.
 - ----- HCl ----- NaOH ----- NH3 ----- NaNO3

____ more Cu(OH)₂ solid

- Question 13 The bacterium Streptococcus pneumoniae has a radius of about 0.8 microns, or 8 x 10^{-5} cm. Use the formula for the volume of a sphere, volume = $4/3\pi r^3$ to calculate the volume
 - of the bacterium.

Assuming the pH of the fluid in the cell is 7.6, calculate how many free H_3O^+ ions are present in one bacterium.

Avogadro's number = 6.023×10^{23}