Name:
8 Digit ID Number:

Some Useful and Useless Information:

$R: 8.314 \mathrm{~J} \cdot \mathrm{~mol}{ }^{-1} \cdot \mathrm{~K}^{-1}, 0.08205 \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$	$\mathrm{~N}=6.023 \times 10^{23}$
$\left(1 /[\mathrm{R}]_{t}\right)-\left(1 /[\mathrm{R}]_{0}\right)=-\mathrm{kt}$	$\mathrm{pX}=-\log _{10}[\mathrm{X}]$
$\mathrm{K}_{\mathrm{w}}=1 \times 10^{-14} @ 25^{\circ} \mathrm{C}$	$\mathrm{t}_{112}: 1 / \mathrm{k}[\mathrm{R}]_{0} \quad \ln 2 / \mathrm{k} \quad[\mathrm{R}]_{0} / 2 \mathrm{k}$
$\mathrm{k}=\mathrm{Ae}-\mathrm{E}_{\mathrm{a}} / \mathrm{RT}$	$\ln [\mathrm{R}]_{\mathrm{t}}-\ln [\mathrm{R}]_{0}=-\mathrm{kt}$
$\ln \left(k_{2} / \mathrm{k}_{1}\right)=\left(-\mathrm{E}_{\mathrm{a}} / R\right)\left[\left(1 / \mathrm{T}_{2}\right)-\left(1 / \mathrm{T}_{1}\right)\right]$	$[\mathrm{R}]_{0} \cdot[\mathrm{R}]_{\mathrm{t}}=\mathrm{kt}$

Question 1 The decomposition of dinitrogen pentoxide in carbon tetrachloride solution at $30^{\circ} \mathrm{C}$ 6 Points $2 \mathrm{~N}_{2} \mathrm{O}_{5}=4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ is first order in $\mathrm{N}_{2} \mathrm{O}_{5}$ with a rate constant of $4.10 \times 10^{-3} \mathrm{~min}^{-1}$.

If the initial concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ is 0.693 M , how long (in minutes) will it take for the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ to reach 0.148 M .
[For Full Credit You Must Show Work]

Question 2 10 Points

Concentration time data for the reaction of $A=$ Products is depicted above. The order of the reaction is either Zero, $1^{\text {st }}$ or $2^{\text {nd }}$. What labels should appear on the X and Y axis if the reaction is:

Zero Order
First Order
X: \qquad

Second Order
X: \qquad
y : \qquad
y : \qquad
y : \qquad

If the reaction was found to be first order with the slope depicted what is the value for the rate constant k ?

$$
\mathrm{k}=
$$

What would the half life for this reaction be?

$$
t_{\frac{1}{2}}=
$$

Question 3 8 Points	A reaction profile (not to scale!) for the reaction $\mathrm{O}_{3}+\mathrm{O}=2 \mathrm{O}_{2}$ is shown below:	Circle those of the following that are false? 1. The magnitude of Ea for the reverse reaction is less than 392.0 kJ . 2. The energy of the products is lower than the energy of the reactants. 3. ΔE is positive. 4. The value of Ea in the presence of a catalyst would be larger than 19.0 kJ . 5. The value of ΔE in the presence of a catalyst would be smaller than -392 kJ
Question 4 6 Points	QUESTION The rate of the reaction $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$ is measured at different temperatures, with the following rate constants, k_{k} determined: What is the activation energy, E_{a}, for this reaction in units of kilojoules?	V Least Squares Analysis slope $=$ -1.22×10^{4} Label the X and Y Axis. Activation Energy = \qquad $\mathrm{kJ} / \mathrm{mol}$

Question 5 The thermal decomposition of nitryl chloride is proposed to occur by the following 8 Points mechanism:
$\begin{array}{ll}\text { slow: } & \mathrm{NO}_{2} \mathrm{Cl}=\mathrm{NO}_{2}+\mathrm{Cl} \\ \text { fast: } & \mathrm{Cl}+\mathrm{NO}_{2} \mathrm{Cl}=\mathrm{NO}_{2}+\mathrm{Cl}_{2}\end{array}$

What is the equation for the overall reaction? \qquad

Which species if any acts as a catalyst?
Which species if any acts as a reaction intermediate? \qquad
Write the rate law for the overall reaction that is consistent with this mechanism.

$$
\text { Rate }=
$$

\qquad
Question 6 Write the equilibrium constant expression, K, for the following reaction:

1. $\mathrm{NH}_{4} \mathrm{I}(\mathrm{s}) \Leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HI}(\mathrm{g})$
2. $2 \mathrm{NO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
3. $\mathrm{HNO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NO}_{2}^{-}(\mathrm{aq})$

Question 7 The equilibrium constant, K , for the following reaction is 8.37 at 736 K :
4 Points $\quad 2 \mathrm{NH}_{3}(\mathrm{~g}) \Leftrightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
Calculate K at this temperature for: $\quad 1 / 2 \mathrm{~N}_{2}(g)+3 / 2 \mathrm{H}_{2}(g) \Leftrightarrow \mathrm{NH}_{3}(g)$

Question 8 The equilibrium constant, K , for the following reaction is 77.5 at 600 K :
7 Points $\quad \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{COCl}_{2}(\mathrm{~g})$
Calculate the equilibrium concentrations of reactant and products when 0.470 moles of CO and 0.470 moles of Cl_{2} are introduced into a 1.00 L vessel at 600 K .

Help! The two solutions to the quadratic equation associated with this problem are: $x=0.555$ and 0.398
[CO] \qquad $\left[\mathrm{Cl}_{2}\right]$ \qquad $\left[\mathrm{COCl}_{2}\right]$ \qquad

Question 9 Consider the following reaction where $\mathrm{K}=10.5$ at 350 K :
10 Points $\quad 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CCl}_{4}(\mathrm{~g})$
A reaction mixture was found to contain 1.10×10^{-2} moles of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{~g}), 2.30 \times 10^{-2}$ moles of $\mathrm{CH}_{4}(\mathrm{~g})$, and 4.09×10^{-2} moles of $\mathrm{CCl}_{4}(\mathrm{~g})$, in a 1.00 Liter container.

Indictate True or False:

1. In order to reach equilibrium $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{~g})$ must be consumed.
2. In order to reach equilibrium K must decrease.
3. In order to reach equilibrium CH_{4} must be consumed.
4. Q is greater than K.
5. The reaction is at equilibrium. No further reaction will occur.

Question 10 Consider the following system at equilibrium where $\mathrm{K}=1.80 \times 10^{-2}$ and $\Delta H^{\circ}=10.4$ at 698 K : 12 points $2 \mathrm{HI}(\mathrm{g}) \Leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$

Indictate True or False:

1. The reaction is product favored.

The production of $\mathrm{H}_{2}(\mathrm{~g})$ is favored by:
2. Decreasing the temperature.
3. Increasing the pressure (by changing the volume).
4. Increasing the volume.
5. Removing HI. \qquad
6. Adding I_{2}.

Question 11 The hypothetic reaction, $A \Leftrightarrow B$, after reaching equilibrium at $25^{\circ} \mathrm{C}$ is heated to $100^{\circ} \mathrm{C}$.
5 points When equilibrium is reestablished it is found that the concentration of B has decreased. Is this enthalpy change associated with this reaction >0 or <0. Briefly justify your choice.

Question 12 The formula for:
5 Points
the conjugate base of HF is.
the conjugate acid of NO_{2}^{-}is.
the conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is.
\qquad
the conjugate acid of HCO_{3}^{-}is.
the conjugate base of $\mathrm{NH}_{4}{ }^{+}$is.
Question 13 The hydronium concentration in an aqueous solution @ $25^{\circ} \mathrm{C}$ is $4.9 \times 10^{-2} \mathrm{M}$. 8 Points The hydroxide ion concentration is:

The pH of this solution is: \qquad
The pOH is:
The solution is (acidic/basic)

Question 14 If instead of $1 \times 10^{-14} @ 25^{\circ} \mathrm{C}$, the K_{w} for water was determined to be $1 \times 10^{-16} @ 25^{\circ} \mathrm{C}$. 5 Points

1. What would the pH of distilled water be @ $25^{\circ} \mathrm{C}$?
2. Would water still be considered neutral?

Briefly Justify your choice?

