Name:

8 Digit ID Number:

Some Useful and Useless Information:

R: 8.314 J.mol ⁻¹ .K ⁻¹ , 0.08205 L.atm.mol ⁻¹ .K ⁻¹	$N = 6.023 \times 10^{23}$	
$(1/[R]_t) - (1/[R]_o) = -kt$	pX = -log ₁₀ [X]	
K _w = 1 x 10 ^{.14} @ 25°C	t _{1/2} : 1/k[R] _o ln2/k [R] _o /2k	
k = Ae ^{-E_a/RT}	ln[R] _t - ln[R] _o = -kt	
$\ln(k_2/k_1) = (-E_a/R) [(1/T_2) - (1/T_1)]$	$[R]_{o} - [R]_{t} = kt$	

Question 1The decomposition of dinitrogen pentoxide in carbon tetrachloride solution at 30 °C6 Points $2 N_2 O_5 = 4 NO_2 + O_2$ is first order in $N_2 O_5$ with a rate constant of 4.10×10^{-3} min⁻¹.

If the initial concentration of N_2O_5 is 0.693 M, how long (in minutes) will it take for the concentration of N_2O_5 to reach 0.148 M. [For Full Credit You Must Show Work]

Concentration time data for the reaction of A = Products is depicted above. The order of the reaction is either Zero, 1st or 2nd. What labels should appear on the X and Y axis if the reaction is:

If the reaction was found to be first order with the slope depicted what is the value for the rate constant k?

k = _____

What would the half life for this reaction be?

†₁ =

Question 7The equilibrium constant, K, for the following reaction is 8.37 at 736 K:4 Points $2 NH_3(g) \Leftrightarrow N_2(g) + 3 H_2(g)$ Calculate K at this temperature for: $1/2 N_2(g) + 3/2 H_2(g) \Leftrightarrow NH_3(g)$

- Question 8The equilibrium constant, K, for the following reaction is 77.5 at 600 K:7 PointsCO(g) + Cl₂(g) ⇔COCl₂(g)Calculate the equilibrium concentrations of reactant and products when 0.470 moles of
CO and 0.470 moles of Cl₂ are introduced into a 1.00 L vessel at 600 K.
 - <u>Help!</u> The two solutions to the quadratic equation associated with this problem are: x = 0.555 and 0.398

	[CO]	[<i>C</i> l ₂]	[COCl ₂]
Question 9 10 Points	Consider the following reaction where K = 10.5 at 350 K: 2 $CH_2Cl_2(g) \Leftrightarrow CH_4(g) + CCl_4(g)$ A reaction mixture was found to contain 1.10×10^{-2} moles of $CH_2Cl_2(g)$, 2.30×10^{-2} moles of $CH_4(g)$, and 4.09×10^{-2} moles of $CCl_4(g)$, in a 1.00 Liter container.		
	Indictate True or False:		
	1. In order to reach equilibrium CH2Cl2(g) must be consumed.		
	2. In order to reach equi	ilibrium K must decrease.	
	3. In order to reach equi	ilibrium CH₄ must be consum	ned
	4. Q is greater than K.		
	5. The reaction is at equi	ilibrium. No further reactio	n will occur.

Question 10Consider the following system at equilibrium where K = 1.80×10^{-2} and ΔH° = 10.4 at 698K:12 points2 HI(g) \Leftrightarrow H₂(g) + I₂(g)

Indictate True or False:

1. The reaction is product favored.

The production of $H_2(g)$ is favored by:

- 2. Decreasing the temperature.
- 3. Increasing the pressure (by changing the volume).
- 4. Increasing the volume.
- 5. Removing HI.
- 6. Adding I_2 .
- Question 11The hypothetic reaction, A ⇔ B , after reaching equilibrium at 25°C is heated to 100°C.5 pointsWhen equilibrium is reestablished it is found that the concentration of B has decreased.Is this enthalpy change associated with this reaction >0 or <0. Briefly justify your choice.</td>

Question 12 5 Points	The formula for: the conjugate base of HF is.		
	the conjugate acid of NO_2^- is.		
	the conjugate base of $H_2PO_4^-$ is.		
	the conjugate acid of HCO_3^- is.		
	the conjugate base of NH_4^+ is.		
Question 13 8 Points	The hydronium concentration in an aqueous solution @ 25°C is 4.9×10^{-2} M.		
	The hydroxide ion concentration is:		
	The pH of this solution is:		
	The pOH is:		

Question 14 If instead of 1×10^{-14} @ $25^{\circ}C$, the K_w for water was determined to be 1×10^{-16} @ $25^{\circ}C$. 5 Points

- 1. What would the pH of distilled water be @ $25^{\circ}C$?
- 2. Would water still be considered neutral? Briefly Justify your choice?