8.7 Acid Base Properties of Pure Water Autoionization of Water

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O}(P)+\mathrm{H}_{2} \mathrm{O}(P) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \\
\frac{K}{}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{\prime}\right] \\
\square \mathrm{K}_{\mathrm{H}}=1 \times 10^{-14} \odot 25^{\circ} \mathrm{C}
\end{gathered}
$$

@ $25^{\circ} \mathrm{C}$

$$
\begin{aligned}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] } & =1 \times 10^{-14} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } & =1 \times 10^{-7} \\
{[\mathrm{OH}-] } & =1 \times 10^{-7}
\end{aligned}
$$

Neltapl:
Acidic
Basic:

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]}
\end{aligned}
$$

8.7

Acid Base Properties of Pure Water

Curiosity!
The autoionization of water is an endothermic process.
$\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$
Thus as the temperature increases then - the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$should - $1+1+\cdots$
a) Decrease
b) Increase
c) Remain the same

$$
\mathrm{H}_{2} \mathrm{O}(8)+\mathrm{H}_{2} \mathrm{O}(\mathrm{D})+\text { 'heat' } \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} .
$$

8.7 Acid Base Properties of Pure Water

Curiosity!

With the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$increasing with increasing temperature this must mean that as the temperature of water increases the

a) becomes acidic
b) becomes basic
c) remain neutral \downarrow

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}(8)+\mathrm{H}_{2} \mathrm{O}(8)+\frac{\text { heat }}{L} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{+} \\
& \longleftrightarrow \mathrm{O}_{5} \text { per previous slide there is a shift towards products } \\
& \text { BuT } \\
& \text { to each } \mathrm{H}_{3} \mathrm{O}^{+} \text {produced there is also ann } \mathrm{OH}^{*}:
\end{aligned}
$$

8.7 Acid Base Properties of Pure Water Example I

An aqueous solution has a hydronium ion, $\mathrm{H}_{3} \mathrm{O}^{+}$, concentration

a) acidic
b) basic
c) neutral
$K_{N}=1 \times 10^{-14}$ © $25^{\circ} \mathrm{C}$

$$
\begin{aligned}
& {\left[\mathrm{H}_{3 \mathrm{O}^{+}}\right]\left[\mathrm{OH}^{-}\right] }=1 \times 10^{-14} \\
&\left(1 \times 10^{-11}\right)\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14} \\
& {\left[\mathrm{OH}^{-}\right] }=\frac{1 \times 10^{-14}}{1 \times 10^{-11}}=1 \times 10^{-3} \\
& {\left[\mathrm{OH}^{-}\right]>\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] }
\end{aligned}
$$

8.8 What are pH and pOH ?

$$
p H=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] ; \quad \mathrm{POH}=-\log _{10}\left[\mathrm{OH}^{-}\right]
$$

The following is only for information purposes...the final formula all you need.

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14} @ 25^{\circ} \mathrm{C}
$$

Take $\log _{10}$ of both sides:

Multiply both sides by -1

$$
\begin{aligned}
& \log _{10}\left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]\right)=\log _{10} 1 \times 10^{-14} \\
& \log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\log _{10}\left[\mathrm{OH}^{-}\right]=-14 \\
& -\underbrace{\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]-\log _{10}\left[\mathrm{OH}^{+}\right]}_{\mathrm{PH}}=14 \\
& \mathrm{PH}+\mathrm{POH}=14 @ 25^{\circ} \mathrm{C}
\end{aligned}
$$

9.8 What are pH and pOH ? pH - Acidity and Basicity

Plant Preferences for pH			
Very acid $5.0-5.8$	Moderately acid $5.5-6.8$	Slightly acid 6.0-6.8	Very alkaline 7.0-8.0
azalea blueberry celeriac chickory crabapple cranberry eggplant endive heathers huckleberry hydrangea Irish potato lily lupine oak raspberry rhododendron rhubarb shallot sorrel spinach beet spruce wild strawberry sweet potato watermelon white birch	bean begonia Brussels sprouts calla camellia carrot collard greens corn fuchsia garlic lima bean parsley pea peppers pumpkin radish rutabaga soybean squash sunflower tomato turnip viola	asparagus beet bok choy broccoli gooseberry grape kale kohlrabi lettuce mustard muskmelon oats okra onion pansy peach peanut pear peony rice spinach Swiss chard	acacia bottlebrush cabbage cauliflower celery Chinese cabbage cucumber date palms dusty miller eucalyptus geranium oleander olive periwinkle pinks pomegranate salt cedar tamarisk thyme

8.8 What are pH and pOH ?
pH - Acidity and Basicity - Example I

An aqueous solution has an $\left[\mathrm{OH}^{-}\right]=1 \times 10^{-5}-$ the pH of this solution is:

$$
\begin{aligned}
\mathrm{POH} & =-\log _{10}\left(1 \times 10^{-5}\right) \\
& =5 \\
\mathrm{PH}+P O H & =14 \\
P H & =14-5=9
\end{aligned}
$$

8.8 What are pH and pOH

 pH - Acidity and Basicity - Example IIa) A 0.15 M aqueous solution of an acid HA has a measured pH equal to 0.82
b) A 0.45 M aqueous solution of an acid HB has a measured pH equal to $0.69 \checkmark$
c) Tom, I have no idea.

Which solution is more acidic?

The nore acidic solution... the one with the snollest pht

8.8 What are pH and pOH

 pH - Acidity and Basicity - Example IIIa) A 0.15 M aqueous solution of an acid HA has a measured pH equal to 0.82 J
b) A 0.45 M aqueous solution of an acid HB has a measured pH equal to 0.69
c) Tom, I have no idea.

Which is the stronger acid?

HA) $\quad \mathrm{PH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

HB)
$\mathrm{PH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$=-\log _{10}(0.45)=\frac{0.35}{4}$
Get uar pH: O.69, neh less acidic them expected.
thus $H B 15$ a Necker acid than HA.
8.10 What Are Buffers?

