1.3 How Do Scientists Report Numbers – Significant Figures

 non be estendets report nambers eighneant rigares				
1.3 Example_1 When 36.456 is added to 74.2 the result is -		A) B) X C) D) ✓ E)	110.656 110.6 110 110.7 I have no clue!	
When adding and subtracting the resu should be recorded with the Same number of decinals as the number with the 14.2 10.6(56)				
+ 56 7 50 N	Note: - The result may have to be rounded up this is often forgotten and is the most common Histake and is the likely reason some of you picked B.			

1.3 How Do Scientists Report Numbers – Significant Figures

1.3 Example_2 When 18.44 is multiplied by 36.1 the answer should be reported to _____ significant figures –

When nultiplying on dividing the nesult should be neconded with the same number of significant figures as the number with the fewest significant figures.

18.44 has 4 significant figures whereas 36.1 has Just 3 significant figures.

1.3 How Do Scientists Report Numbers – Significant Figures

In a complex series of non-pulations

- a) any addition on subtraction should be connied out first ... and the nules governing this applied to the answer.
- B) Then and only then should the nultiplication and on division be done.

23.56 - <u>2.3</u> 21.2(6) 3 sig figs. Note the use of Scientific Notation.

```
1.248×10<sup>3</sup> has 4 sig. figs
100 has 1 sig. fig
1.00×10<sup>2</sup> has 3 sig. figs.
```

1.5 Factor-Label Method – Dimensional Analysis – The Mathematics of Chemistry What is a Handy Way to Convert from One Unit to Another?

1.5 Example_1

Prior to the metric system, the common unit of weight was the pound (lb). Under the S.I. System, 1 lb = 453.5g. If an old recipe calls for 9 ounces of flour (16 oz = 1 lb), how many grams of flour is this equivalent to?

1.5 Dimensional Analysis – The Mathematics of Chemistry What is a Handy Way to Convert from One Unit to Another?

1.5 Example_2

A field is 100m long by 45m wide. What is the area in cm^2 ? (1m = 100cm) To illustrate the power of dimensional analysis, first find the area in m^2 and then do the conversion to cm^2 .

AREA =
$$100 \text{ m} \times 45 \text{ m} = 4.5 \times 10^3 \text{ m}^2$$

 $4.5 \times 10^3 \text{ m}^2 = 4.5 \times 10^3 \text{ m} \cdot \text{m}$
 $4.5 \times 10^3 \text{ mm} \quad 100 \text{ cm} \quad 100 \text{ cm}$
 $1 \text{ m} \quad 1 \text{ m}$ = $4.5 \times 10^3 \text{ cm} \cdot \text{cm}$

 $= 4.5 \times 10^{7} \text{ cm}^{2}$