
8.10 What Are Buffers?

8.10 What Are Buffers? – How Do They Resist Drastic pH Changes Acid–Base Reactions

W. Weak S. Strong A. acid B. Bose

 $H_3O^+ + OH^- = 2 H_2O(9)$

25.59 + 100% + 100% + 100% + 100% = 100%

3. NA + SB = 100% $HCN(ag) + OH^{-} = CN^{-} + H_{2}O(I)$

4. NA + NB = ?

Plenunder: HCP, HBr, HI, HNO3, H2504 and HCDO4...6 SA, all dissociate 100% 30R all 6 the cation in solution is 100% H30+ (the acid). The only difference between them is the anion.

LIOH, NaOH, KOH and Ba (OH) 2... 45B, all dissociate 100% 3 on all 4 the amon in solution is 100% OH (the lase). The only difference between them is the cotion.

8.3 What Are Conjugate Acid-Base Pairs?

ARRHENIUS	Bronsted Lonry
Acio: Produces H20t in nater	Acio: a proton (4+) donor.
$HCP(aq) + H2O(2) = H30^{+} + CP^{-}$	$\frac{HO}{L}(aq) + H_{2}O(p) = H_{3}O^{+} + O^{-}$ Acio, denotes H+ to H_{2}O(p)
To Acid	Acio, denotes H+ to H20(P)
BASE: PROduces OH in water	BASE: O proton (H+) acceptor
NH3 (ag) + H2O(9) <=> NH4+ + OH-	$NH_3(aq) + H_2O(9) \iff NH_4^{\dagger} + OH^{-}$
□ Base	Base accepts a H+ from H2018)
	??: Notice anything hint BRONSTED LOWRY acid/lose definition about 420(9) in
	the trio exambles dinew aroun wolls in

8.3 What Are Conjugate Acid–Base Pairs?

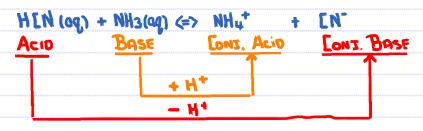
$$H[N(aq) + NH3(aq) \iff NH4^{+} + CN^{-}$$

Ocid

 $Bose$
 $NH4^{+} + CN^{-} \iff H(N(aq) + NH3(aq)$

BASE

Acio


HEN (oq) + NH3 (oq)
$$\Leftrightarrow$$
 NH4 + EN-
ACID BASE ACID* BASE*

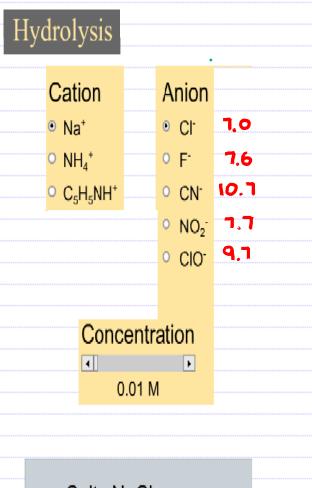
Acio = Consugate acid.

BASE = Consugate base.

HEN | EN = Orid / Consugate Base pair.

NH3/NH4 = Base/Consugate acid pair.

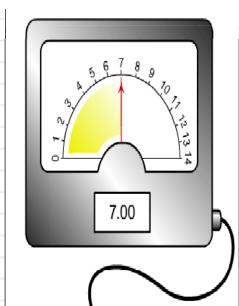
Acid - H+ = its conjugate base.


BASE + H+ = its conjugate acid.

Hald on here a numble are we claiming
Cations can behave as acids and

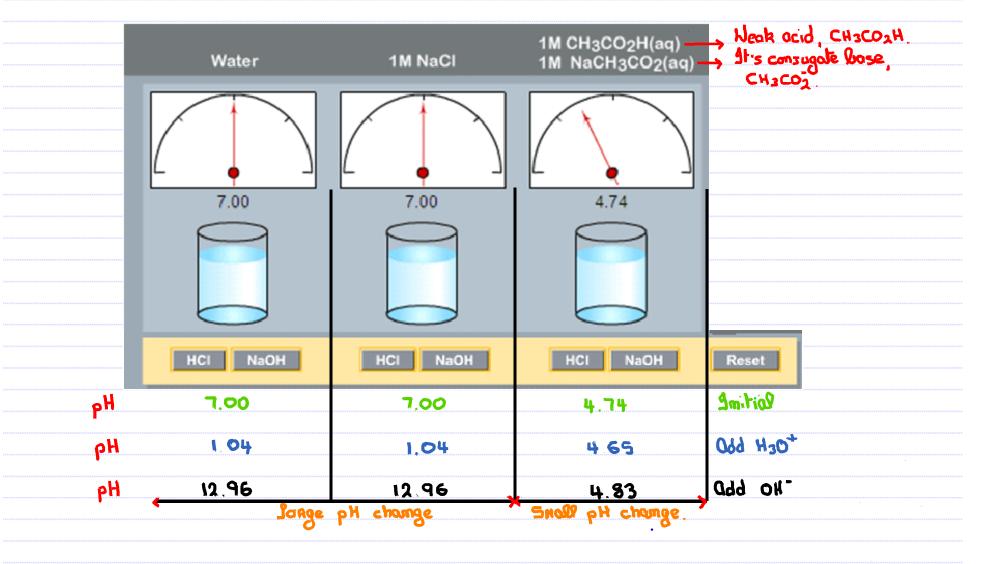
Anions can behave as bases?

Answer: Yes to all but 10!


8.3 What Are Conjugate Acid-Base Pairs? - Consequences

Salt: NaCl

$$pH = 7.00$$



BASE	Conz. Ocid	
CI-	HCP	Strong acid
F-	HF]	U
CN-	HEN L	Neak acids
NO2 ⁻	HNO2	
Go.	HOO	

PH UP .. note pour mater lasic

8.10 What Are Buffers?

