1.5 Factor-Label Method – Dimensional Analysis – The Mathematics of Chemistry What is a Handy Way to Convert from One Unit to Another?

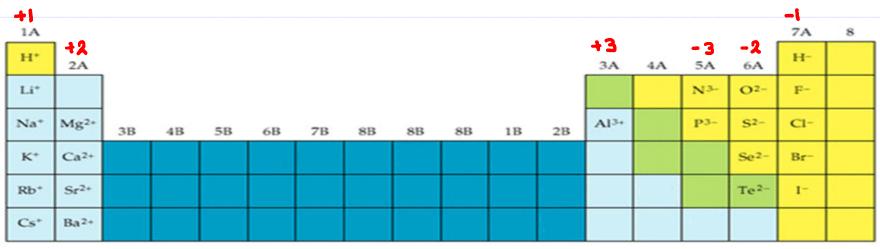
#### 1.5 Example\_3

The density of whole blood at 37°C is 1.06 g.cm<sup>-3</sup>. What is the mass, in grams of a 15.0 cm<sup>3</sup> sample of blood?



- A) 15.9g **✓**
- B) C) 14.2g
  - Neither a or b
- D) Tom I am clueless!

# 1.5 Factor-Label Method – Dimensional Analysis – The Mathematics of Chemistry What is a Handy Way to Convert from One Unit to Another?


#### 1.5 Example\_4

Ammonium Nitrate decomposes explosively according to the following balanced chemical equation:

 $2NH_4NO_3(s) = 2N_2(g) + 4H_2O(g) + O_2(g)$   $\rightarrow$  Balanced Chemical Equation If 3.4 moles (the chemists unit of quantity) decomposes, how many moles of gaseous water are produced.

3.4 mol NH4NO3 4 H20 2 NH4NO3





Monoalomic cations Retain the parent name 
$$Na = Sodium$$
  $Na^{+} = Sodium$ 

Monoalomic amonis end in 'ide'  $O = Oxygen$   $O^{2-} = Oxide$ 

Convention dictoles that the name of the cotion comes fixet, followed by the name of the amion.



| 2  | 1 |
|----|---|
| Z. | 4 |

| Name     | Symbol | Mass (g)                                               | Charge | Mass*1 (amu)*2 |
|----------|--------|--------------------------------------------------------|--------|----------------|
| PROTON   | ip     | 1.673 ×10-24                                           | +1     | 1              |
| NEUTRON  | 9 ju   | 1,675 × 10 <sup>-24</sup><br>9,109 × 10 <sup>-28</sup> | 0      | 1              |
| ELECTRON | -1 e   | 9.109 x 10 <sup>-28</sup>                              | - 1    | 0.0005         |

- a) Themists tend to ignore the wass of the electron.
- B) # PROTONS ... the atom determinator ... #p = ATONIC NUMBER (Z)
- c) # NEUTRONS ... The other Mass contributor ... #n + #p = MASS NUMBER (A)
- d) # ELECTRONS ... determines the charge on the atom.

  #e = #p, neutral: #e > #p, amion: #e < #p, cation

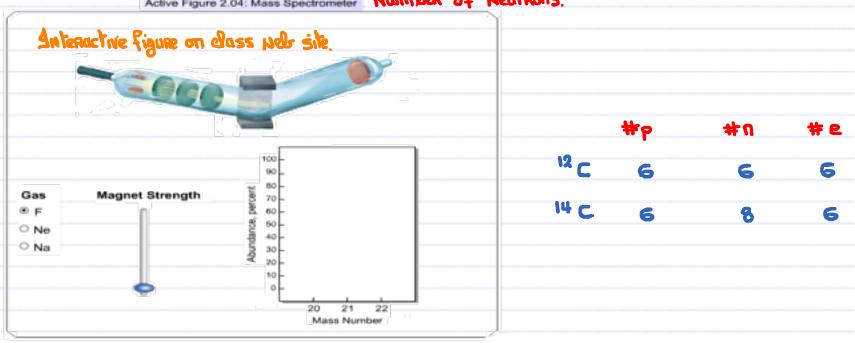
\*1: Roumded to one significant figure # 2: 1 cmu = 1.6605 x 10-24

#### 2.4 What Are Atoms Made Of? – *The Three Subatomic Particles*

## 2.4 Example\_1

Which if any of the following species has the same number of Neutrons as it does Electrons?




- a) <sup>47</sup><sub>24</sub>Cr d) <sup>35</sup>Cl⁻ ✓
- b) <sup>24</sup>Mg<sup>2+</sup> e) <sup>125</sup><sub>50</sub>Sn

c) <sup>59</sup>27Co<sup>2+</sup>

|                              | # Protons | # Neutrons | # Electrons |          |  |
|------------------------------|-----------|------------|-------------|----------|--|
| Ψ7<br>Ž4 Cr                  | 24        | 23         | 24          |          |  |
|                              |           | 20         |             |          |  |
| 24 Mg<br>59 Co <sup>2+</sup> | 12        | 12         | 10          |          |  |
| <b>60</b> 37                 |           |            |             |          |  |
| 27 Co"                       | 27        | 32         | 25          |          |  |
| 25                           |           |            |             |          |  |
| 35 Q-                        | 17        | 18         | 18          | <b>√</b> |  |
| 125 _                        |           |            |             |          |  |
| 125<br>50 Sn                 | 50        | 75         | 50          |          |  |

### 2.4 What Are Atoms Made Of? – *Isotopes*

ISOTOPE: Otoms with the same number of protons but different Active Figure 2.04: Mass Spectrometer Number of Neutrons.



14 C: Notural Radioactive isotope used in dating artifacts

HORR on this bounds like end of the course.

- 2.4 What Are Atoms Made Of? — Atomic Weight
- 2.4 Example\_2

Chlorine has two naturally occurring isotopes:

<sup>35</sup>CI, 75.77% Abundant, Exact Mass 34.96885 amu

<sup>37</sup>CI, 24.23% Abundant, Exact Mass 36.96590 amu

What is the Atomic Weight of Chlorine?

Atomic Weight : the weighted average of the naturally occurring isotopes.

$$0.7577(34.96885) + 0.2423(36.96590) = 35.45271 annu$$

Note: When doing these treat all numbers as exact.
Which nears no number limits the significant figures in the answer.

- 2.4 What Are Atoms Made Of? *Atomic Weight*
- 2.4 Example\_3

Neon has 3 naturally occurring isotopes:

20Ne, 90.92% Abundant, Exact Mass 19.9989 amu
 21Ne, 0.26% Abundant, Exact Mass 20.9975 amu
 22Ne, 8.82% Abundant, Exact Mass 21.9979 amu

What is the Atomic Weight of Neon?



The 4<sup>th</sup> decimal place in the answer is
a) 5 b) 6 c) 7 d) 8

0.9092 (19.9989) + 0.0026 (20.9975) + 0.0882 (21.9979) = 20.1778