4.3 What Is a Mole and How Do We Use It to Calculate Mass Relationships. Example 1

How many ATOMS of fluorine are present in 3.30 moles of BF_{3} ?

$$
N=6.023 \times 10^{23} \mathrm{~mol}^{-1}
$$

$$
\begin{array}{l|l}
3.30 \mathrm{md} \mathrm{BF}_{3} & 3 \mathrm{~F} \\
& 1 \mathrm{BF}_{3}
\end{array}=9.90 \mathrm{~mol} \mathrm{~F} \quad \mathrm{BF}_{3}: 1 \mathrm{~B}+3 \mathrm{~F}
$$

$$
\begin{array}{c|c}
9.90 \mathrm{md} F & 6.023 \times 10^{23} \mathrm{atoms} \\
\hline & 1 \mathrm{mof}
\end{array}=5.96 \times 10^{24} \text { toms } F
$$

$$
6.023 \times 10^{23} \mathrm{~mol}^{-1}=\frac{6.023 \times 10^{23}}{1 \mathrm{~mol}}
$$

4.3 What Is a Mole and How Do We Use It to Calculate Mass Relationships. Example 2

How many MOLES of fluorine are present in 3.09×10^{22} molecules of BF_{3} ?

$$
N=6.023 \times 10^{23} \mathrm{~mol}^{-1}
$$

$$
\begin{aligned}
& \begin{array}{l|l}
3.09 \times 10^{22} \text { molecules } \mathrm{BF}_{3} & 1 \mathrm{md} \\
\hline & 6.023 \times 10^{23} \text { molecules }
\end{array}=0.0513 \mathrm{~mol}_{\mathrm{BF}}^{3}
\end{aligned}
$$

5.3 What Is a Mole and How Do We Use It to Calculate Mass Relationships. Example 3

How many MOLES of water are present in 5.41 grams of this compound?

HaH
01
a) 0.1
b) 0.2
c) 0.3 J
d) 0.4
e) Help

H: 1.01

$$
\begin{aligned}
& 5.41 \mathrm{~g} \mathrm{H} \mathrm{O} \rightarrow \text { ? } \mathrm{mol} \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{H}_{2} \mathrm{O}: \quad 2(\mathrm{H})+\mathrm{O} \\
& 2(1.01)+16.0=18.02 \mathrm{~g} \cdot \mathrm{~mol}^{-1} \ldots \frac{18.02 \mathrm{~g}}{1 \mathrm{~mol}} \\
& \begin{array}{l|l}
5.41 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} & 1 \mathrm{~mol} \\
\hline & 18.02 \mathrm{~g}
\end{array}=0.03 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

5.3

What Is a Mole and How Do We Use It to Calculate Mass Relationships. Example 4

How many Grams of ethanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)$ are present in 0.61 moles of this compound?

C: 12.01
H: 1.01
a) 46
b) 96
c) $28 \checkmark$
d) Help
$0: 16.00$
$\mathrm{CH}_{3} \mathrm{CH} 2 \mathrm{OH}: \quad 2(\mathrm{C})+6(\mathrm{H})+0$

$$
2(12.01)+6(1.01)+16.00=46.08 \mathrm{~g} \cdot \mathrm{~mol}^{-1} \ldots \frac{46.08 \mathrm{~g}}{1 \mathrm{~mol}}
$$

$0.61 \mathrm{~mol}^{2} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	46.08 g
	1 mol

4.4 How Do We Balance Chemical Equations?

Example 1
Balance the following chemical equation:

$$
2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{C}(\mathrm{~s})={\stackrel{4}{2} \mathrm{Fe}(\mathrm{~s})+3 \mathrm{CO}_{2}(\mathrm{~g})}_{2}
$$

Reactants				
Fe	2	2	4	4
O	3	3	6	6
C	1	1	1	1

Products					
Fe	1	2	2	4	4
O	2	2	6	6	6
C	1	1	3	3	3

$$
2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{C}(\mathrm{~s})=4 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{CO} 2(g)
$$

4.4 How Do We Balance Chemical Equations?

Example 2
Balance the following chemical equation:

$$
\underline{C_{2}} \mathrm{H}_{6}(\mathrm{~g})+\underline{7 / 2} \mathrm{O}_{2}(\mathrm{~g}) \quad=\quad \underline{2} \mathrm{CO}_{2}(\mathrm{~g})+\underline{3} \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Reactants			
C	2	2	2

Products						
C	1	2	2	2		
H	2	2	6	6		
O	3	5	7	7		

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+\underset{\longrightarrow}{\left(7 / 2 \mathrm{O}_{2}(\mathrm{~g})\right.}=2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{y}) \quad \text { Fectimieally } \mathrm{X} \\
& 2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g})=4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{f})
\end{aligned}
$$

4.4 How Do We Balance Chemical Equations?

Example 3
a) 1
d) 4
b) 2
e) 5
c) 3

Balance the following chemical equation:

$$
\ldots \mathrm{AgNO}_{3}(\mathrm{aq})+\ldots \mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq}) \quad=\quad ? \mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})+\ldots \mathrm{KNO}_{3}(\mathrm{aq})
$$

? What is taking yous so long??
4.4 How Do We Balance Chemical Equations?

Example 3
a) 1
d) 4
b) 2
e) 5
c) 3

Balance the following chemical equation:

$$
\underline{2} \mathrm{AgNO}_{3}(\mathrm{aq})+\ldots \mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq}) \quad=? \underline{?} \mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})+\underline{2} \mathrm{KNO}_{3}(\mathrm{aq})
$$

Reactants						
Ag	1	2	2			
NO_{3}	1	2	2			
K	2	2	2			
CrO_{4}	1	1	1			

Products								
Ag_{2}	2	2	2					
NO_{3}	1	1	2					
K	1	1	2					
CrO_{4}	1	1	1					

$$
2 \mathrm{AgNO}_{3}(\mathrm{oq})+\mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{loq})=\mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{oq})
$$

Polyatomic ions tend to remain intact ... when they do treat them as a single entity.

