4.3 What Is a Mole and How Do We Use It to Calculate Mass Relationships. Example 1

How many ATOMS of fluorine are present in 3.30 moles of BF₃?

$$N = 6.023 \times 10^{23} \text{ mol}^{-1}$$

$$6.023 \times 10^{23} \text{ mol}^{-1} = \frac{6.023 \times 10^{23}}{1 \text{ mol}^{23}}$$

4.3 What Is a Mole and How Do We Use It to Calculate Mass Relationships. Example 2

How many MOLES of fluorine are present in 3.09x10²² molecules of BF₃?

$$N = 6.023 \times 10^{23} \text{ mol}^{-1}$$

$$\frac{3.09 \times 10^{22} \text{ molecules BF}_3}{6.023 \times 10^{23} \text{ molecules}} = 0.0513 \text{ mol BF}_3$$

$$0.0513 \text{ mol BF}_3$$
 $\frac{3 \text{ F}}{1 \text{ BF}_3}$ = 0.154 mol F

What Is a Mole and How Do We Use It to Calculate Mass Relationships. 5.3 Example 3

How many MOLES of water are present in 5.41 grams of this compound?

0: 16.0

H: 1.01

a) 0.1 b) 0.2 c) 0.3 √ d) 0.4 e) Help

5.41g H20 -> ? mol H20

$$H_{20}: 2(H) + O$$

 $2(1.01) + 16.0 = 18.029.mol^{-1} ... 18.029$

5.3 What Is a Mole and How Do We Use It to Calculate Mass Relationships. Example 4

How many Grams of ethanol (CH₃CH₂OH) are present in 0.61 moles of this compound? C: 12.01

H: 1.01

нин За а) 46

b) 96 c) 28 ✓ d) Help

o: 16.00

CH₃ CH₂OH :
$$\lambda$$
 (C) + 6(H) + 0
 λ (12.01) + 6(1.01) + 16.00 = 46.08 g.mol⁻¹ ... 46.08 g

4.4 How Do We Balance Chemical Equations? Example 1

Balance the following chemical equation:

$$2 \text{ Fe}_2O_3(s) + 3 C(s)$$

=

$$\frac{4}{2}$$
 Fe(s) + $\frac{3}{2}$ CO₂(g)

Reactants						
Fe	2	2	4	4	4	
0	3	3	6	6	6	
С	3	1	١	1	3	

Products /							
Fe	١	2	2	4	4		
0	2	2	6	6	6		
С	}	J	3	3	3		

4.4 How Do We Balance Chemical Equations? Example 2

Balance the following chemical equation:

$$C_2H_6(g) + \frac{1}{2}O_2(g)$$

$$2 CO_2(g) + 3 H_2O(1)$$

Reactants 🗸						
С	2	2	2	2		
Н	6	6	6	6		
0	2	2	2	7		

$$C_2H_6(g) + \frac{7}{2}O_2(g) = 2CO_2(g) + 3H_2O(g)$$
 $C_2H_6(g) + 7O_2(g) = 4CO_2(g) + 6H_2O(g)$

$$?Ag_2CrO_4(s) + KNO_3(aq)$$

? What is taking you so long ??

4.4 How Do We Balance Chemical Equations? Example 3

Balance the following chemical equation:

$$\frac{2}{3}$$
 AgNO₃(aq) + $\frac{1}{3}$ K₂CrO₄(aq)

$$?Ag_2CrO_4(s) + AKNO_3(aq)$$

Reacto	ints	1	√	
Ag	١	2	2	
NO ₃	١	2	2	
K	2	2	2	
CrO ₄	١	1	ı	

Products 🗸					
Ag	2	2	2		
NO ₃	١	١	2		
K	l	1	2		
CrO ₄	1	1	1		

Polyatomic ions tend to remain intact ... when they do treat them as a single entity.