
	Class	Anno	ound	cem	ent	3			
Exam 11:	Tuesday,	Novembe	R 8	12:45	·2:15	, Am	chass.		
	Review	Sunday	Nov	6,	3:0				
								· .	
 	8		6 5	-	<u>∓</u> ◀	>			Slide - 1

7.7 What Is Le Chatelier's Principle

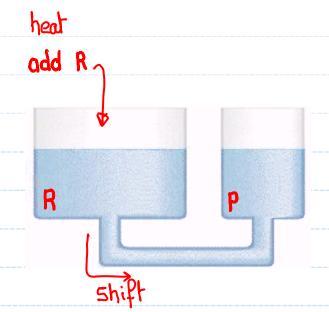
Changing the Temperature – Exothermic

Reaction that gives of heat Heat is a product

R >> P + heat

o product ... the equilibrium will shift towards

Reactants


Why does this happen ? $K = \frac{[P]}{[R]}$... heat is not part of the expression. But when I heat reaction, [R]T, [P] wand thus [P](R] will ie K)

K is dependent on T .. exothernic reaction, as TT: [R] I and KI

7.7 What Is Le Chatelier's Principle

Changing the Temperature – Endothermic

Heat is a reactant

R + heat (=> P

If we heat this reaction ... the equivalent of adding more reactant ... the equilibrium will shift towards products.

Why close this happen ... $K = \frac{CP}{R}$... heat is not part of the expression!

But when I heat the reaction [P]1, [R] I and thus $\frac{CP}{R}$ 1, ie K1.

K is dependent on T ... endothernic reaction, as T1: [P]1, [R] I and K1

7.7 What Is Le Chatelier's Principle
Changing the Temperature – Summary

B) Sondothermic R + heat (=> P

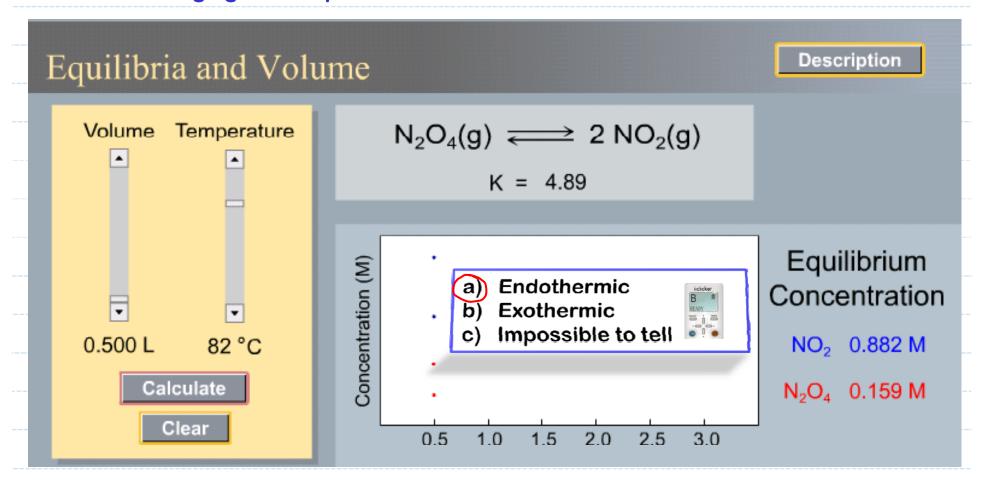
Action Equilibrium shift Why

Old heat (heat the Ren) Lowards products K1

Remove heat (cool the Ren) Lowards reactaints K1

7.7 What Is Le Chatelier's Principle Changing the Temperature

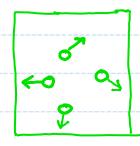
The production of ammonia is an exothermic process – $N_2(g) + 3 H_2(g) \Leftrightarrow 2 NH_3(g)$ To maximize the [NH₃] at equilibrium it is best to


a) b) c) Heat the reaction Cool the reaction Leave it as is!

$$R \Leftrightarrow P + heat$$

Maximize P. [NH3] ... you want a shift lowerds P... cool the reaction.

7.7 What Is Le Chatelier's Principle Changing the Temperature

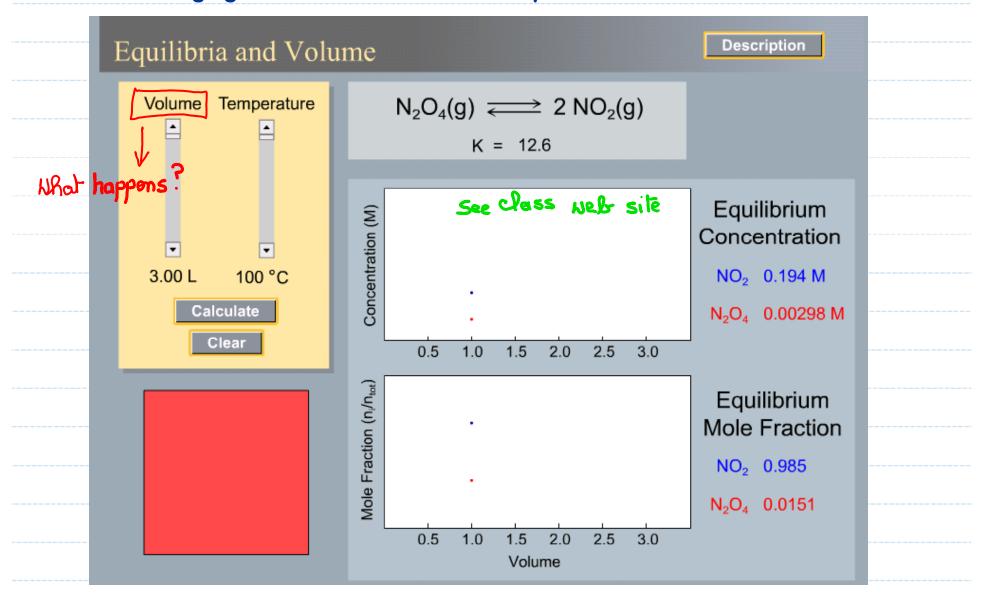

? What is happening to K as I vincrease the temperature

K is increasing ... shift towards products ... must be endothernic

7.7 What Is Le Chatelier's Principle

Pressure – Gas Phase Equilibria

Pressure: Force per unit area


- 1. Collisions
- 2. Momentum.

Gas Reactions:

[R]

·= gas malecule

7.7 What Is Le Chatelier's Principle Changing the Pressure – Gas Phase Equilibria

7.7 What Is Le Chatelier's Principle **Changing the Pressure – Gas Phase Equilibria** Reactants (g) (=> Products (g) EQUILIBRIUM SHIFT ACTION Volume 1, pressure decrease : JONARds the side with the greater NUMber of gas molecules ... Trying to restore the pressure ... if it cam. Lowards the side with the fewest Volume V, pressure uncrease: NUMBER of gas Molecules ... Trying to Reduce the pressure ... if it can.

7.7 What Is Le Chatelier's Principle Changing the Pressure – Summary

2. 2 NOCP (g)
$$\Leftrightarrow$$
 2 NO(g) + CP2(g) • + • \Leftrightarrow • + • + •
Qction Lquilibrium shift Why

V1, Pl Zonards products K1

VI, P1 Zonards reactants KV