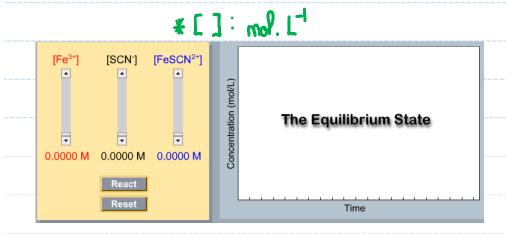

Announcen	<u>ments – Lecture XIII – </u>	- Thursday, Oct 25 rd	
		. ↓ ↓ .	Slide - 112
		<u> </u>	J

7.5 What Does It Mean to Say That a Reaction Has Reached Equilibrium



7.5 What Does It Mean to Say That a Reaction Has Reached Equilibrium

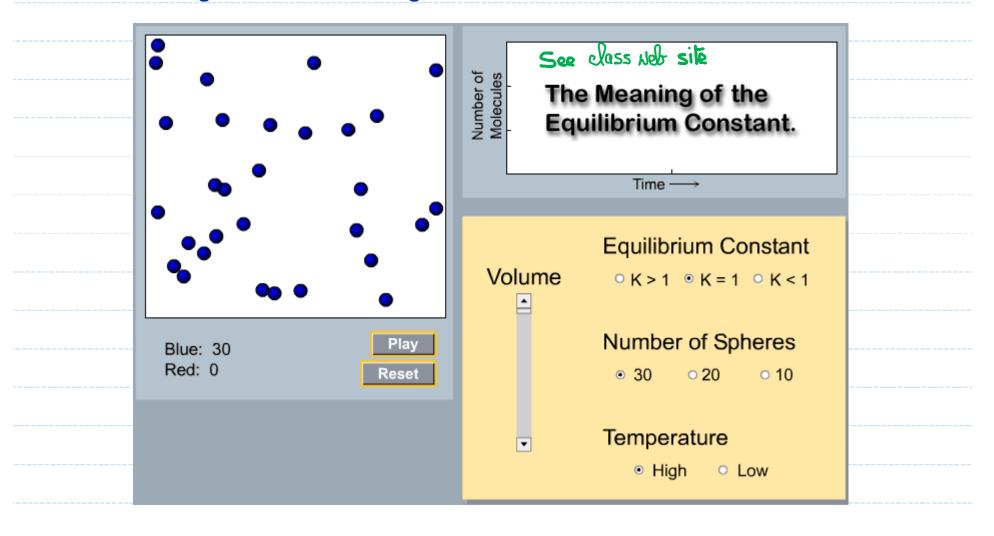
$$Fe^{3+} + SCN^{-} \Leftrightarrow Fe^{3+} + SCN^{2+}$$
 $Fe^{3+} + SCN^{-} \Leftrightarrow Fe^{3+} + SCN^{-}$

7.5 What Does It Mean to Say That a Reaction Has Reached Equilibrium

Starting Concentrations							
	[Fe ³⁺]	[SCN ⁻]	[FeSCN ²⁺]				
#1	0.004	0.007	0				
#2	0	0	0.007				
#3	0.004	0.003	0.004				

	Equilibrium Concentrations							
		[Fe ³⁺]	[SCN ⁻]	[FeSCN ²⁺]	[Fe ³⁺][SCN ⁻]/[FeSCN ²⁺]	[FeSCN ²⁺]/[Fe ³⁺][SCN ⁻]		
#3	1 2.3	85 × 10 ⁻³	5.285¥10 ⁻³	1.714×10 ⁻³	7.046 × 10 ⁻³	141.9		
#2	2 4.3	33 × 10 ⁻³	4.333×10 ⁻³	2.666 XIO-3	7.042 × 10 ⁻³	142.0		
#3	3 5 .0	069 × 10 ⁻³	4.069× 10-3	2.930 X 10 ⁻³	7.040 XID-3	142.0		

7.6 What is an Equilibrium Constant and How Do We Use It? Writing Equilibrium Expressions


1) K = [Products]/[Reactants] K = Equilibrium constant.

2) When writing Equilibrium Expressions (equations) ... pure solids and liquids do not appear in the expression.

4)
$$HF(aq) + H_2D(9) \iff H_3O^+ + F^-$$

7.6 What is an Equilibrium Constant and How Do We Use It?

The Significance of the Magnitude of K

7.6 What is an Equilibrium Constant and How Do We Use It? The Significance of the Magnitude of K

- a) K >> 1: Ut equilibrium the reaction favors products
- 6) K << 1 : Or equilibrium the reactions forors reactants
- c) K ~ 1 : Ot equilibrium significant quantities of products and reactants present.
- a) $N_2(g) + 3 H_2(g) \iff 2 NH_3(g)$ $K = 3.5 \times 10^8 @ 25^{\circ}C$

c) Hb + O2 ←> HbO2 K ≈ 12 @ 25°C

K >> 1

Product favored at equilibrium.

K ~ 1

Significant quantities of reactorits and products present at equilibrium.

8) $HF(aq) + HaO(P) \iff HaO^{\dagger} + F^{-}$ $K = 7.6 \times 10^{-5} Q 25^{\circ}$

K << 1
Reactant favored at equilibrium