 <u>Announcements</u>	- Lecture XVIII	- Tuesday, I	Nov 20 th	

8.3 What Are Conjugate Acid-Base Pairs?

ARRHENIUS:

Acio: Produces H30+ in Nater

 $HCP(aq) + H2O(2) = H3O^{+} + CP^{-}$

Qcid

BASE: PRODUCES OH in Noter.

NH3(00) + H2O(P) <=> NH4+ OH-

Base

BRONSTED LOWRY

Acio: O proton (H+) donor ...

 $HCP(aq) + H_2O(9) = H_3O^+ + CP^-$

acid ... donates H+ to H20(9)

Base: (1 proton (H+) acceptor

NH3(ag) + H2O(1) (=> NHy++ OH
Base ... accepts a H+ from H2O(1)

?... Notice anything about HaO(1) in the two examples given above??

8.3 What Are Conjugate Acid-Base Pairs?

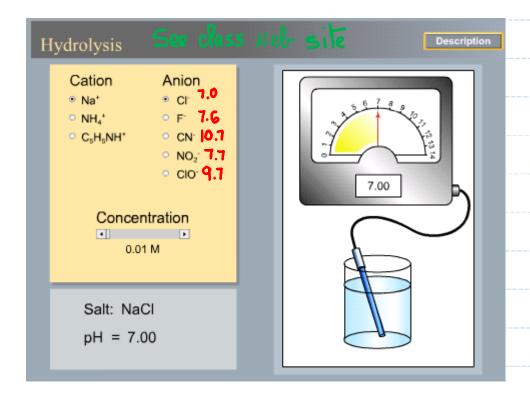
HCN (aq) + NH3 (aq)
$$\Leftrightarrow$$
 NH4+ + CN
Ocid Base Ocid* Base*

Ocid* - Conxugate ocid

Base* - Conxugate bose

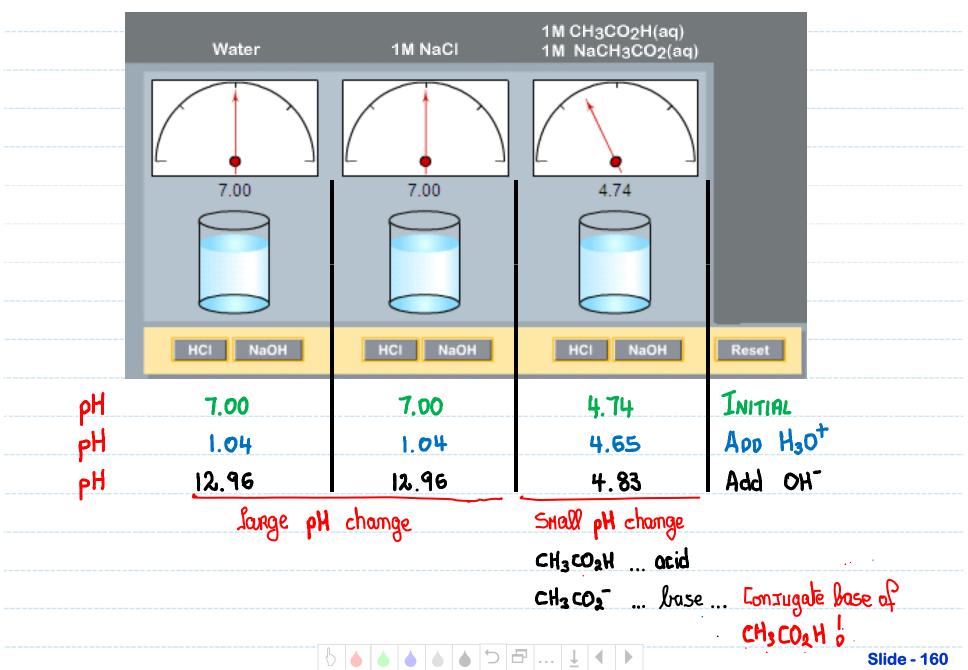
HCN/CN ... acid/Conzugate lase pair
NH3/NH4 ... Base/Conzugate acid pair

HEN(aq) + NH3(aq)
$$\Leftrightarrow$$
 NH4 + EN -


Qrid Base [. Qrid [. Base]

 $+H^{+}$ 7

 $-H^{+}$


Cations behaving as acids?
Ounions behaving as bases?

8.3 What Are Conjugate Acid-Base Pairs? - Consequences

Base	Consugate acid	
CQ-	HČ	strong acid
F	HF]
CN"	HCN	Oll weak acids
NOZ	HNO2	\
Q0 ⁻	HCPO	

8.10 What Are Buffers?

8.10 What Are Buffers? – How Do They Resist Drastic pH Changes

acid Conjugate base

H30[†]

$$H_{3}O^{+} + CH_{3}CO_{2}^{-} = H_{2}O(P) + CH_{3}CO_{2}H(QQ)$$

OVERALL CHANGES

[CH3CO2]: Reacted with the added H30t

[CH3CO2H]: 1 ... O product of the reaction that removed the H3O!

[H30]: 1 Not by Much a result of [CH3CO2H]1.

PH: 1 .. not by much.

8.10 What Are Buffers? – How Do They Resist Drastic pH Changes Addition of Strong Base – OH⁻ 1M CH₃CO₂H / 1M CH₃CO₂-Conjugate base acid WA + SB = 100% OH? $OH' + CH_3CO_2H(qq) = CH_3CO_2 + H_2O(1)$ OVERALL CHANGES: [CH3CO2H]: \ Reacted with the added OH-[CH3CO2]: 1. O product of the reaction that removed the OH [OH]: + .. not by much ... a nesult of [CH3CO] 17 ... a base pH : 1 ... not by much

A buffer solution made from HF and KF has a pH = 2.84.

Addition of OH- will cause -

- 1. Increase significantly
- 3. Decrease significantly
- 5. Increase

- 2. Increase slightly
- 4. Decrease slightly
- 6. Decrease

addung base ... solution will become MORE basic

$$HF(aq) + OH^{-} = H_{2}O(Q) + F^{-}$$