
Announcements - Lecture V- Tuesday, Sep 18th

Remote ID's with No Names	No iClicker Registered
	Last Name First Name
#803BE05B	Chinchilla Keven
#8209901B	Fairburn Haley
#821B9F06	Gerhart Marika
#827AB54D	Guittarr Craig
#887424D8	Jacobs Alex
#8894FFE3	Jinks Sarah
	Lin Luyan
	Metraw Drew
	Porcelli Allison
	Rahman Syed

 Announcemer	nts – Lecture \	V– Tuesday, S	<u>ep 18th</u>	

4.3 What Is a Mole and How Do We Use It to Calculate Mass Relationships. *Molar Mass ... (Formula Weight)*

$$C_4H_0: 4(c) + 10(H)$$

$$4(12.01) + 10(1.01) = 58.14 g.mal^{-1}$$
Moder Mass

Reminder:
$$58.14 \text{ g.mol}^{-1} = 58.14 \text{ g}$$

- 4.3 What Is a Mole and How Do We Use It to Calculate Mass Relationships. Example 1
 - a) How many ATOMS of fluorine are present in 3.30 moles of BF₃?
 - b) How many MOLES of fluorine are present in 3.09x10²² molecules of BF₃

a)
$$3.30 \text{ mol BF3}$$
 $3 \text{ F} = 9.90 \text{ mol F}$
 1 BF3

$$9.90 \text{ mol} = 6.023 \times 10^{23} \text{ atoms} = 5.96 \times 10^{24} \text{ atoms} = 1 \text{ mol}$$

b)
$$3.09 \times 10^{22}$$
 molecules BF3 1 mol = 0.0513 mol BF3
 6.023×10^{23} molecules

5.3 What Is a Mole and How Do We Use It to Calculate Mass Relationships. **Example 2**

How many MOLES of water are present in 5.41 grams of this compound?

- O: 16.0
- H: 1.0

- a) 0.1
- b) 0.2 c) 0.3
- d) 0.4
- e) Help

5.41 g Nater -> ? mol nater

 $H_{20}: 2(H) + 0$

 $2(1.01) + 16.0 = 18.02 g. mor^{-1} ... 18.02 g$

5.41 g Nater 1 mol _ 0.3 mol nater 18.02 g

5.3 What Is a Mole and How Do We Use It to Calculate Mass Relationships. Example 3

How many Grams of ethanol (CH₃CH₂OH) are present in 0.61 moles of this compound?

C: 12.01

H: 1.01 0: 16.0

c) 28

d) Help

Balance the following chemical equation:

$$\frac{\lambda}{2}$$
 Fe₂O₃(s)+ $\frac{3}{2}$ C(s)

$$\frac{3}{2}$$
 Fe(s) + $\frac{3}{2}$ CO₂(g)

Reactants /					
Fe	2	2	4	4	4
0	3	3	6	6	6
С	١	ı	1	1	3

Balance the following chemical equation:

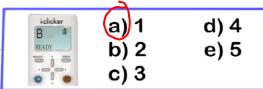
$$C_2H_6(g) + \frac{7}{2}O_2(g)$$

$$\frac{2}{2}$$
CO₂(g) + $\frac{3}{2}$ H₂O(l)

Re	Reactants /					
С	2	2	2	2		
Н	6	6	6	6		
0	2	2	2	7		

$$C_2H_6(g) + \sqrt{\frac{1}{2}}D_2(g) = 2CO_2(g) + 3H_2O(p)$$

$$2 C_2 H_6(g) + 7 O_2(g) = 4 CO_2(g) + 6 H_2O(g)$$



- a) 1
- d) 4
- b) 2 c) 3
- e) 5

Balance the following chemical equation:

$$_AgNO_3(aq) + _K_2CrO_4(aq)$$

$$\frac{?}{A}g_2CrO_4(s) + \underline{KNO_3(aq)}$$

Balance the following chemical equation:

$$\frac{2}{4}$$
 AgNO₃(aq) + $\frac{1}{4}$ K₂CrO₄(aq)

$$\frac{?}{!}$$
Ag₂CrO₄(s) + $\frac{2}{!}$ KNO₃(aq)

Produc		/		
Ag	2	2	2	
NO ₃	I	1	2	
K	J	1	2	
CrO ₄	1	1	1	

Polatomic 1000s ... when Romaining intact ... leat as a single entity.