Announcements-Lecture II-Thursday. Sep $5^{\text {th }}$

Class Neb Site: wNN.chem, umass,edu/genchem
iClicker ... for eredit starts on Ihursclay, Sep 12.
$\xrightarrow{2}$
1.3 How Do Scientists Report Numbers - Significant Figures
1.3 Example_1

When 36.456 is added to 74.2 the result is -
36.456
$\frac{74.2}{110.656}$
$\zeta>50 \ldots$ round up
110.7

When adding and subtracting the resultant should be recorded according to the number with the fevest decimal places.
1.3 How Do Scientists Report Numbers - Significant Figures
1.3 Example_2

When 18.44 is multiplied by 36.1 the answer should be reported to \qquad significant figures -

A) 1
B) 2
C) 3
D) 4
E) I have no clue!

When multiplying and dividing, the
18.44 ... 4
36.1 ... 3
number with the fewest significant figures rules.
1.3 How Do Scientists Report Numbers - Significant Figures
1.3 Example_3

Question
Carry out the following calculation and report the answer in the correct number of 3 significant figures.

Significant figures	
A)	1
B)	2
C)	3
D)	4
E)	I have no clue!

Any addition or subtraction should le completed fist:

$$
23.56-2.3=\frac{21.2(6)}{43 \text { sig figs }^{6}}
$$

Note the use of Scientificinotation ... 1.248×10^{3}
$100 \ldots 1$ significant faure
1.00×10^{2} has 3 significant figures
1.5 Factor-Label Method - Dimensional Analysis - The Mathematics of Chemistry What is a Handy Way to Convert from One Unit to Another?
1.5 Example_1

Prior to the metric system, the common unit of weight was the pound (lb). Under the S.I. System, $1 \mathrm{lb}=453.5 \mathrm{~g}$. If an old recipe calls for 9 ounces of flour ($16 \mathrm{oz}=1 \mathrm{lb}$), how many grams of flour is this equivalent to?

$$
\begin{aligned}
& 1 \mathrm{Db}=453.5 \mathrm{~g} \\
& 16 \mathrm{og}=1 \mathrm{~Pb}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l|l|l}
90 g & 1 \mathrm{~Pb} \\
\hline 16 \mathrm{gg}
\end{array}=0.56 \mathrm{db} \\
& \begin{array}{c|c}
0.56 \mathrm{ff} & 453.5 \mathrm{~g} \\
\hline 1 \mathrm{lb}
\end{array}=255 \mathrm{~g}
\end{aligned}
$$

1.5 Dimensional Analysis - The Mathematics of Chemistry What is a Handy Way to Convert from One Unit to Another?
1.5 Example_2

A field is 100 m long by 45 m wide. What is the area in $\mathrm{cm}^{2} ?(1 \mathrm{~m}=100 \mathrm{~cm})$ To illustrate the power of dimensional analysis, first find the area in m^{2} and then do the conversion to cm^{2}.

$$
\begin{aligned}
& a_{\text {Read }}=100 m \times 45 m=4.5 \times 10^{3} \mathrm{~m}^{2} \\
& 4.5 \times 10^{3} \mathrm{~m}^{2}=4.5 \times 10^{3} \mathrm{~mm} \\
& \begin{array}{l|c|c}
4.5 \times 10^{3} \mathrm{mmoin} & 100 \mathrm{~cm} & 100 \mathrm{~cm} \\
\hline & 1 \mathrm{mi} & 1 \mathrm{~mm}
\end{array}=4.5 \times 10^{7} \mathrm{~cm} \mathrm{~cm} \\
& =4.5 \times 10^{7} \mathrm{~cm}^{2}
\end{aligned}
$$

1.5 Factor-Label Method - Dimensional Analysis - The Mathematics of Chemistry What is a Handy Way to Convert from One Unit to Another?
1.5 Example_3

The density of whole blood at $37^{\circ} \mathrm{C}$ is $1.06 \mathrm{~g} . \mathrm{cm}^{-3}$. What is the mass, in grams of a $15.0 \mathrm{~cm}^{3}$ sample of blood?

Would it help if 9 told you .. $1.06 \mathrm{~g} . \mathrm{om}^{-3}=\frac{1.06 \mathrm{~g}}{1 \mathrm{~cm}^{3}}$?
1.5 Factor-Label Method - Dimensional Analysis - The Mathematics of Chemistry What is a Handy Way to Convert from One Unit to Another?

1.5 Example_4

Ammonium Nitrate decomposes explosively according to the following balanced chemical equation:
2 $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s})=2 \mathrm{~N}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \leftarrow$ Balanced chemical equation
If 3.4 moles (the chemists unit of quantity) decomposes, how many moles of gaseous water are produced.
$3.4 \mathrm{~mol}^{\mathrm{NH}} \mathrm{NNO}_{3} \left\lvert\, \frac{4 \quad \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{NH}_{4} \mathrm{NO}_{3}}=6.8 \mathrm{~mol}^{2} \mathrm{H}_{2} \mathrm{O}\right.$
3.5 How Do We Name Ionic Compounds - An Early First Visit

Monoatomic cations retain the parent $\mathrm{NaMe}: \quad \mathrm{Na}=$ sodium $\quad \mathrm{Na}^{+}=$sodium
Monoatomic anions end in 'ide': $\quad O$ = oxygen $O^{2-}=$ oxide

