3.6 How Do We Predict Formulas and Name Ionic Compounds.

Give the correct chemical formula for the ionic compound, sodium phosphate.

Give the correct chemical formula for the ionic compound, aluminum carbonate.

It is a periodic property. That is, it varies in a systematic way when the elements are arranged in the periodic table.

PERIODIC TABLE OF THE ELEMENTS																	
3 Li 6.939	4 Be 9.012	Electronegativity										B 10.81	${ }^{6}$ C 12.01	${ }^{7} \mathrm{~N}$ 14.01	${ }^{8}$ 16.00	$\stackrel{9}{\mathbf{F}}$ 19.00	
$\begin{array}{\|l\|} \mathrm{n} \\ \mathrm{Na} \end{array}$	$\begin{aligned} & 12 \\ & \mathbf{M g} \end{aligned}$ 24.31											$\begin{aligned} & 13 \\ & \mathbf{A l} \end{aligned}$ 26.98	$\stackrel{14}{S i}$ Si 28.09	$\begin{gathered} 15 \\ \mathbf{P} \end{gathered}$	$\begin{array}{r} 16 \\ \mathrm{~S} \end{array}$	$\stackrel{17}{\mathbf{C}}$ 35.45	
$\stackrel{19}{\mathbf{K}}$	${ }^{20} \mathrm{Ca}$	$\begin{aligned} & { }^{21} \\ & \mathbf{S c} \end{aligned}$	$\stackrel{22}{\mathbf{T i}}$	$\stackrel{23}{\mathbf{V}}$	${ }^{24} \mathrm{Cr}$	$\begin{aligned} & 25 \\ & \mathbf{M n} \end{aligned}$	$\begin{aligned} & 26 \\ & \mathrm{Fe} \end{aligned}$	$\stackrel{27}{\mathrm{Co}}$	$\begin{aligned} & { }^{28} \\ & \mathbf{N i} \end{aligned}$	${ }_{\mathbf{2 9}}^{\mathrm{Cu}}$	${ }^{30} \mathbf{Z n}$	${ }^{31} \mathbf{G a}$	$\begin{aligned} & 32 \\ & \mathbf{G e} \end{aligned}$	$\begin{aligned} & 33 \\ & \text { As } \end{aligned}$	$\begin{aligned} & 34 \\ & \mathrm{Se} \end{aligned}$	$\begin{aligned} & 35 \\ & \mathrm{Br} \end{aligned}$	
39.10	40.08	44.96	47.90	50.94	52.00	54.94	55.85	58.93	58.71	63.55	65.39	69.72	72.61	74.92	78.96	79.90	
$\begin{array}{\|l\|} \hline 37 \\ \mathbf{R b} \\ 85.47 \\ \hline \end{array}$	$\begin{aligned} & 38 \\ & \mathbf{S r} \\ & 87.62 \end{aligned}$	${ }^{39} \mathbf{Y}$ 88.91	40 Zr 91.22	$\begin{aligned} & 41 \\ & \mathbf{N b} \\ & 92.91 \end{aligned}$	$\begin{aligned} & \hline 42 \\ & \text { Mo } \\ & 95.94 \\ & \hline \end{aligned}$	43 Tc (99)	${ }_{\mathbf{R}}^{\mathbf{R} \mathbf{u}}$ 101.1	45 Rh 102.9	${ }^{46}$ Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8 121.8	52 Te 127.6	53 I 126.9	
55 Cs 132.9	56 Ba 137.3	57 La 138.9	72 $\mathbf{H f}$ 178.5	${ }^{73} \mathbf{T a}$ 181.0	${ }^{74} \mathbf{W}$ 183.8	75 Re 186.2	${ }^{76} \mathrm{Os}$ 190.2	$\begin{aligned} & 77 \\ & \mathbf{I r} \end{aligned}$ 192.2	$\begin{aligned} & 78 \\ & \mathbf{P t} \end{aligned}$	${ }^{79}$ 197.0	80 Hg 200.6	$\begin{aligned} & 81 \\ & \mathrm{Tl} \\ & 204.4 \\ & \hline \end{aligned}$	82 Pb 207.2	83 Bi 209.0	$\begin{aligned} & { }^{84} \\ & \text { Po } \\ & (209) \end{aligned}$	$\begin{aligned} & 85 \\ & \text { At } \end{aligned}$ (210)	
87 Fr (223)	88 Ra 226.0	89 Ac 227.0	104 Unq (261)	105 Unp \qquad	106 Unh (263)	107 Uns \qquad	108 Uno (265)	109 Une (266)	= hydrogen								

4.3 What Is a Mole and How Do We Use It to Calculate Mass Relationships?

```
What is the mass in grams of 1 mole of Li.
    6
    7
    N=6.0221\times10 23 mol
```

Important chemical principle(s).
Count by weighing.

Weigh by counting.

Simple arithmetic (often with whole numbers)

A mole is . . . An amount of substance

What is the mass in grams of 1 mole of Li .

${ }^{6} \mathrm{Li}:$	6.015 amu	7.42%
${ }^{7} \mathrm{Li}:$	7.016 amu	92.58%

$$
N=6.0221 \times 10^{23} \mathrm{~mol}^{-1} \quad 1 \mathrm{amu}=1.6606 \times 10^{-24} \mathrm{~g}
$$

A mole is . . . An amount of substance that has the same number of particles as there are atoms in 0.012 kg of ${ }^{12} \mathrm{C}$.

Strictly speaking, a mole is not a number (like a million). It is the amount of substance that has an Avogadro's number of particles.

By substance we mean a chemically pure substance.
4.3 What Is a Mole and How Do We Use It to Calculate Mass Relationships. Molar Mass ... (Formula Weight)

Al	Si	P	S
13	14	15	16
26.98	28.09	30.97	32.07

IUPAC now replaced some atomic weights with a range: e.g. Si [28.08, 28.09] S [32.05, 32/08]

The numbers in the periodic table are the masses of a very large number of atoms of the individual elements.
4.3 What Is a Mole and How Do We Use It to Calculate Mass Relationships. Example 1
a) How many ATOMS of fluorine are present in 3.30 moles of BF_{3} ?
b) How many MOLES of fluorine are present in 3.09×10^{22} molecules of BF_{3}

Now we are counting.
5.3 What Is a Mole and How Do We Use It to Calculate Mass Relationships. Example 2

How many MOLES of water are present in 5.41 grams of this compound?
a) 0.1
b) 0.2
c) 0.3
d) 0.4
e) Help

Also counting here. We know the weight.
If a grain of rice weighs 18 mg how many grains are there in 5.41 g of rice.

Example 3

How many Grams of ethanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)$ are present in 0.61 moles of this compound?
\qquad b) 96
c) 28
d) Help

Now we are weighing by counting.

If a grain of sand weighs 46 mg , what is the weight of 610 grains?
4.4 How Do We Balance Chemical Equations?

Example 1
Start here Thurs 9/19
Balance the following chemical equation:

$$
\ldots \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\ldots \mathrm{C}(\mathrm{~s})=\quad \ldots \mathrm{Fe}(\mathrm{~s})+\ldots \mathrm{CO}_{2}(\mathrm{~g})
$$

Reactants			
Fe			
C			

Products			
Fe			
O			
C			

