3.6 C	How Do We Predict Formulas and Name Ionic Compounds. <i>Polyatomics</i>
	Give the correct chemical formula for the ionic compound, sodium phosphate.
	Give the correct chemical formula for the ionic compound, aluminum carbonate.
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

It is a periodic property. That is, it varies in a systematic way when the elements are arranged in the periodic table.

					PEF	RIODI	C TA	BLE (OF TI	HE EI	LEME	NTS					
1A	2A	3B	4B	5B	6B	7 B	8B	8B	8B	1B	2B	3A	4A	5A	6A	7A	8A
1	4	1		E	:lec	tron	ega	ativi	ty			5	6	7	8	0	
Li	Be						Ŭ					B	C	Ň	Ő	F	
6.939	9.012											10.81	12.01	14.01	16.00	19.00	
11	12											13	14	15	16	17	
Na	Mg											Al	Si	P	S	Cl	
22.99	24.31		1	1				1			1	26.98	28.09	30.97	2.07	35.45	
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ca	32 Ge		34 Se	35 Br	
39.10	40.08	44.96	47.90	50.94	52.00	54.94	55.85	58.93	58.71	63.55	65.39	69.72	72.61	74.92	78.96	79.90	
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	•
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	
85.47	87.62	88.91	91.22	92.91	95.94	(99)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	•
55	56	57	72	73 T	74	75 D-	76	77 T	78	79	80	81	82 Db	83 D:	84	85	
Cs	ва	La	HI	18	W	ке	Os	Ir	Pt	Au	Hg	11	PD	BI	PO	At	
132.9	137.3	138.9	178.5	181.0	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	
8/ Fr	88 Ra	Ac	104 Ung	Unn	Unh	Uns	Uno	Une					h,	dra	~~~		
(223)	226.0	227.0	(261)	(262)	(263)	(262)	(265)	(266)					: пу	uio	yen		
(440)			(202)	()	(200)	((200)	(200)	1								

4.3 What Is a Mole and How Do We Use It to Calculate Mass Relationships?

⁶ Li: 6.015 amu 7.42% ⁷ Li: 7.016 amu 92.58% $N = 6.0221 \times 10^{23} \text{ mol}^{-1}$ 1 amu = 1.6606x10 ⁻²⁴ g	 What is the mas	s in grams of 1 m	ole of Li.		
$N = 6.0221 \times 10^{23} \text{ mol}^{-1}$ 1 amu = 1.6606x10 ⁻²⁴ g	 ⁶ Li: ⁷ Li:	6.015 amu 7.016 amu	7.42% 92.58%		
	 N = 6.0	221x10 ²³ mol ⁻¹		1 amu = 1.6606x10 ⁻²⁴ g	

Important chemical principle(s).
 Count by weighing.
 Weigh by counting.
 Simple arithmetic (often with whole numbers)
 A mole is An amount of substance

4.3 What Is a Mole and How Do We Use It to Calculate Mass Relationships?

 What is the mas	ss in grams of 1 m	ole of Li.		
 ⁶ Li:	6.015 amu	7.42%		
⁷ Li:	7.016 amu	92.58%		
 N = 6.0)221x10 ²³ mol ⁻¹		1 amu = 1.6606x10 ⁻²⁴ g	

A mole is ... An amount of substance that has the same number of particles as there are atoms in 0.012 kg of ¹²C.

Strictly speaking, a mole is not a number (like a million). It is the amount of substance that has an Avogadro's number of particles.

By substance we mean a chemically pure substance.

What Is a Mole and How Do We Use It to Calculate Mass Relationships. 4.3 Molar Mass ... (Formula Weight) Si S AI Р 13 14 15 16 26.98 28.09 30.97 32.07 IUPAC now replaced some atomic weights with a

range: e.g. Si [28.08, 28.09] S [32.05, 32/08]

The numbers in the periodic table are the masses of a very large number of atoms of the individual elements.

What Is a Mole and How Do We Use It to Calculate Mass Relationships. 4.3 Example 1

	a) How many ATOMS of fluorine are present in 3.30 moles of BF_3 ?	
	b) How many MOLES of fluorine are present in 3.09×10^{22} molecules of BF ₃]
_		
	Now we are counting.	
	Slide	e - 17

5.3 What Is a Mole and How Do We Use It to Calculate Mass Relationships. Example 2

5.3 What Is a Mole and How Do We Use It to Calculate Mass Relationships. Example 3

 $\begin{tabular}{|c|c|c|c|} \hline \begin{tabular}{|c|c|c|} \hline \begin{tabular}{|c|c|c|} \hline \begin{tabular}{|c|c|} \hline \begin{tab$

Slide - 20