Announcements - Lecture XX - Tuesdav, Nov $18^{\text {th }}$

1. Final Lab - Saturday, November 22 ${ }^{\text {nd }} .$. 1-4pm ... ISB 155/160 (A-E)
a) Print lab prior to coming to lab -- use the 'Print Friendly Version' located on the top left hand side of the page - this is the version that contains the 'Data Sheet' that you will hand in upon completing the lab.
b) The pre-lab quiz associated with this lab is the 'TA Evaluation' that that can be found in your Class Owls. Completing this by Friday, December $5^{\text {th }}$ is equivalent to a perfect quiz score.
2. Third Exam - Tuesday December $2^{\text {nd }}-1: 00-2: 15 p m$ - In Class

3 or 4 questions will be taken from Lab Owls 3,4 and 5.
3. No class on Tuesday, November $25^{\text {th }}-I$ have an appointment in Boston.
4.
iClicker:
Choose any letter: A-E
8.10 What Are Buffers? - How Do They Resist Drastic pH Changes

A buffer solution made from HF and KF has a $\mathrm{pH}=2.84$.
Addition of OH - will cause -

1. Increase significantly
2. Increase slightly
3. Decrease significantly
4. Decrease slightly
5. Increase
6. Decrease
a)
$\frac{10}{2-0}$ pH? 2 adding base ... solution will become more bask
b) POH ? $4 \quad\left[\mathrm{OH}^{-}\right] \uparrow \ldots \mathrm{POH}=-\log _{10}\left[\mathrm{OH}^{-}\right]$will \downarrow
c) $\quad[\mathrm{HF}]$? $\quad \mathrm{HF}(\mathrm{aq})+\mathrm{OH}^{-}=\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{F}^{-}$
d) $\left[F^{-}\right] /[H F] ? \quad 5 \quad \operatorname{See}(c) \ldots[H F] \downarrow,\left[F^{-}\right] \uparrow \quad\left[F^{-}\right] /[H F], \uparrow$
8.10 What Are Buffers? - Making an Optimal Buffer Solution - pH and pKa

See class neb site to see whether this holds true

When [acid] = [c .Base], the pH of the buffer is equal to the pho of the acid.

When choosing a buffer system one usually selects one whose pho is closest to the desired pH.

Since the desired pH is more acidic than the plo ... merease the [] of the acid. [$\left.\mathrm{HCO}_{2} \mathrm{H}\right] \uparrow, \mathrm{pH} \downarrow$
[$\left.\mathrm{HCO}_{2}^{-}\right] \uparrow, \mathrm{pH} \uparrow$
8.10 What Are Buffers? - Making an Optimal Buffer Solution Buffer Capacity

8.10 What Are Buffers? - Identifying Buffer Solutions

How many of the following aqueous solutions are buffers? 3!
a) $0.24 \mathrm{M} \mathrm{HI}+0.18 \mathrm{M} \mathrm{NaI} \quad X$... HI is a strong acid
d) $0.10 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}+0.18 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOK} \quad \checkmark$... Weak acid and its con Jugate bose
c) $0.27 \mathrm{M} \mathrm{NH}_{4} \mathrm{Br}+0.31 \mathrm{M} \mathrm{NH}_{3}$ \checkmark... Weak acid and its con Jugate base
b) $0.34 \mathrm{M} \mathrm{NH}_{4} \mathrm{NO}_{3}+0.39 \mathrm{M} \mathrm{NaNO}_{3}$ $X \ldots \mathrm{NO}_{3}^{-}$is not the conJugate base of NH_{4}^{+}
d) $0.10 \mathrm{M} \mathrm{HCl}+0.21 \mathrm{M} \mathrm{NaF} \int!\quad S A+N B=100 \% \quad H_{3} O^{+}+F^{-}=\mathrm{H}_{2} \mathrm{O}(X)+\mathrm{HF}(\mathrm{aq})$

$$
\underbrace{0.1 M 0.21 \mathrm{M}}_{0.11 M}=0.1 \mathrm{M}
$$

Offer reaction O.IM HF and O.IIM F ${ }^{-}$Remain!

1. Increase significantly
2. Decrease significantly
3. Increase
4. Increase slightly
5. Decrease slightly
6. Decrease
a) Addition of 0.1 mol of HCl will case the [HCN] to -

$$
5 .
$$

$$
\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CN}^{-}=\mathrm{H}\left[\mathrm{~N}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right.
$$

b) Addition of 0.1 mol of HCl will case the pOH to2.

$$
\mathrm{PH} \downarrow \text { slightly with the addion of } \mathrm{H}_{3} \mathrm{O}^{+} \ldots \mathrm{PH}+\mathrm{POH}=14 \cdots \mathrm{POH} \uparrow \text { slightly }
$$

c) Addition of 0.1 mol of NaOH will case the [HCN] to -
6.

$$
\mathrm{OH}^{-}+\mathrm{HCN}(a q)=\mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{CN}^{-}
$$

d) Addition of 0.2 mol of NaOH will case the pH to -

1. Buffer capacity exceeded ... PH will increase significantly.
8.11 How do We Calculate the pH of a Buffer?

$$
p H=p K_{0}+\log _{10}\left[A^{-}\right] /[H A]
$$

HA = Weak acid, A^{-}is HA's conjugate base
Buffer pH: $\quad \mathrm{pH}=\mathrm{pHa}+\log _{10} \frac{\text { [Buffer lase }]}{[B u f f e r \text { Acid d }]}$
HENDERSON-HASselback Equation

$$
\begin{aligned}
& H A(a q)+H_{2} O(p) \Leftrightarrow H_{3} O^{+}+A^{-} \\
& K_{a}=\frac{\left[\mathrm{H}_{3} 0^{+}\right]\left[A^{-}\right]}{[H A]} \quad \mathrm{PH}=-\log _{10}\left[\mathrm{H}_{3} 0^{+}\right] \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=K_{a}\left([\mathrm{HA}] /\left[\mathrm{A}^{-}\right]\right)} \\
& \log _{10}\left[H_{3} 0^{+}\right]=\log _{10} K_{a}+\log _{10}[H A] /[A] \\
& -\log _{10}\left[H_{3} 0^{+}\right]=-\log _{10} \mathrm{Ka}_{a}-\log _{10}[H A] /\left[A^{-}\right] \\
& p H=p K a\left(-\log _{10}\left[H A /\left[A^{-}\right]\right.\right.
\end{aligned}
$$

