Announcements - Lecture XI - Tuesday, Oct 20th

- 1. Third Lab Saturday, October 24th ... 1-4pm ... ISB 155/160 (A-E)
 - a) Print lab prior to coming to lab -- use the 'Print Friendly Version' located on the top left hand side of the page this is the version that contains the 'Data Sheet' that you will hand in upon completing the lab.
 - b) Second set of Lab Owls will appear in Owl after this lab. There are a total of 4 sets of Lab Owls and they are worth <u>25% of the Lab</u> <u>Grade.</u>
- 2. i-clicker
 B

iClicker:

Choose any letter: A-E

C

What Is a Covalent Bond and How Does One Form?

Drawing Lewis Structures of Covalent Compounds

Group V:

Organic Molecules

C₂H₆O H-c-c-c-o-H 2(4) 6(1) **H**: 20 BABP H-c- Q-c-H 2×LP -4

How many C-H bonds are there in C₂H₆O

- a) 3 b) 4 c) 5 d) 6 e) Help

How do I know which one?

Does it malter?

Notes

When dealing with organic molecules we can assume with some degree of certainity that the "Octet Rule" is not violated and thus

- C: 4 bonds, O lone pairs. H: 1 bond.
- N 3 bonds, I some pair.
- O: 2 bonds, 2 lone pairs.
- Halides: 1 bond, 3 lone pairs.

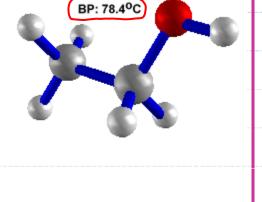
C

What Is a Covalent Bond and How Does One Form?

Drawing Lewis Structures of Covalent Compounds

Group V:

Organic Molecules

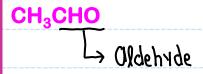


L) Olcohol functional group

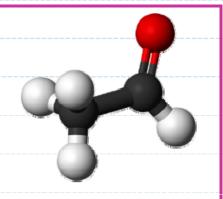
Romonis

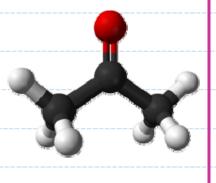
→ Ether

Dimethylether


C

What Is a Covalent Bond and How Does One Form?

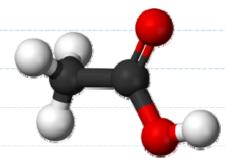

Drawing Lewis Structures of Covalent Compounds


Group V:

Organic Molecules

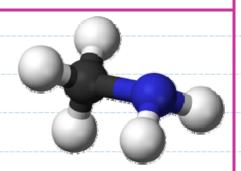
H H
$$H - \frac{1}{c} - \frac{1}{c} = \overline{0}$$
H Ocetaldehyde

What Is a Covalent Bond and How Does One Form?


C Drawing Lewis Structures of Covalent Compounds

Group V:

Organic Molecules


CH₃COOH

→ Carboxilic acid

CH₃NH₂

Ly anine (base)

3.10 Molecular Geometries Balloons – Shapes – Angles

 No of Balloons	Shape	Name	Angle
4	109.5°	Telkahedron	~109°
 3	120°	Trigonal planar	120°
 ک	180°	Linear	180°

3.10 Molecular Geometries and Bond Angles

Molecular Geometry Worksheet Fall 2008 Whelan Page 1									
Lewis Structure	Classification	X+E	Electron Pair Geometry	Molecular Geometry	Bond Angle	Polarity	_		
H—C—H A: Central atom X: attachments on A E: Lone Pairs on A	<u>ΑχψΕ</u> ο	4	Electron Pair Germelay 109.5° Tetrahedron	Telfa hed non	<u>~109°</u>				
H—N—H H	<u>AX3E1</u>	<u>+</u>	Telan hed Ron	Trigonal pyramid	<u>~109°</u>				
H ₂ O H—Ö—H	AX2E2	4	Telkahed Ron	angular/Bent (~109°)	<u>~109°</u>				