Announcements - Lecture XX - Tuesday, Nov 24 ${ }^{\text {th }}$

1. Final Lab - Saturday, December $5^{\text {th }}$... 1-4pm ... ISB 155/160 (A-E)
a) Print lab prior to coming to lab -- use the 'Print Friendly Version' located on the top left hand side of the page - this is the version that contains the 'Data Sheet' that you will hand in upon completing the lab.
b) The pre-lab quiz associated with this lab is the 'TA Evaluation' that that can be found in your Class Ow/s. Completing this by Friday, December $1^{\text {th }}$ is equivalent to a perfect quiz score.
2. Third Exam - Tuesday December $8^{\text {th }}-1: 00-2: 15 p m$ - In Class 3 or 4 questions will be taken from Lab Owls 3, 4 and 5.
3. iClicker:

Choose any letter: A-E
8.10 What Are Buffers? - How Do They Resist Drastic pH Changes

Addition of Strong Acid - $\mathrm{H}_{3} \mathrm{O}^{+}$

$$
\begin{aligned}
& 1 \mathrm{M} \underset{\text { weak acid }}{\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}} / 1 \mathrm{M} \underbrace{\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}}_{\text {consulate base }} \\
& \xrightarrow{\sim} S A+N B=100 \% \\
& \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}=\mathrm{H}_{2} \mathrm{O}(\mathrm{P})+\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} \text { (aq) } \\
& \text { Bufferbase Bufferacid }
\end{aligned}
$$

Overall Changes:
$\left[\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right]: \downarrow$... Reacts wilt the added $\mathrm{H}_{3} \mathrm{O}^{+}$.
$\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]: \uparrow$ product of the reaction that removed $\mathrm{H}_{3} \mathrm{O}^{+}$.
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]: \uparrow$... not by much ... a result of the $\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right] \uparrow$. pH : $\downarrow \ldots$ Not by much.
8.10 What Are Buffers? - How Do They Resist Drastic pH Changes

Addition of Strong Base- OH^{-}

$$
\begin{aligned}
& \underset{\text { weak a aid }}{1 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}} / 1 \mathrm{M} \underset{\text { conjugate base }}{\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}} \\
& \qquad \mathrm{OH}=100 \% \\
& \mathrm{OH}^{-}+\mathrm{CH}_{3}\left(\mathrm{CO}_{2} \mathrm{H}(\mathrm{aq})=\mathrm{H}_{2} \mathrm{O}(\mathrm{P})+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right. \\
& \text {Buffer acid } \\
& \text { Buffer bose }
\end{aligned}
$$

Overall Changes:
$\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]: \downarrow$... Reacts with the added OH^{-}.
[$\left.\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right]: \uparrow$ product of the Reaction that Removed the OH^{-}.
[OH^{-}]: \uparrow... not by much ... a Result of the $\left[\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right] \uparrow$. pH: \uparrow... Not by Much.
8.10 What Are Buffers? - How Do They Resist Drastic pH Changes

A buffer solution made from HF and KF has a $\mathrm{pH}=2.84$.
Addition of OH - will cause -

1. Increase significantly
2. Increase slightly
3. Decrease significantly
4. Decrease slightly
5. Increase
6. Decrease
a)
a) PH pH?

2
adding bose will cause the solution to become more basic.
b) POH ? $4 \quad\left[\mathrm{OH}^{-}\right] \uparrow: \mathrm{POH}=-\log _{10}\left[\mathrm{OH}^{-}\right]$will \downarrow
c) \qquad $[H F] ?$

$$
H F(a q)+\mathrm{OH}^{-}=\mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{F}^{-}
$$

Buffer acid Buffer base
d)
$\frac{\left[F^{-}\right]}{[H F]}$
5 See c). $[H F] \downarrow,[F] \uparrow$
8.10 What Are Buffers? - Making an Optimal Buffer Solution - pH and pKa
See clos5 welf site to see whether this holds Thue for other buffer 5ystoms.

$$
0.10 \mathrm{M}=0.10 \mathrm{M}
$$

$$
\begin{array}{ll}
\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-4} & \mathrm{pK}_{\mathrm{a}}=3.74 \\
\mathrm{~K}_{\mathrm{a}}=4.2 \times 10^{-7} & \mathrm{pK}_{\mathrm{a}}=6.38 \\
\mathrm{~K}_{\mathrm{a}}=3.5 \times 10^{-8} & \mathrm{pK}_{\mathrm{a}}=7.46 \\
\mathrm{~K}_{\mathrm{a}}=7.3 \times 10^{-10} & \mathrm{pK}_{\mathrm{a}}=9.14 \\
\mathrm{~K}_{\mathrm{a}}=5.6 \times 10^{-10} & \mathrm{pK}_{\mathrm{a}}=9.25 \\
\mathrm{~K}_{\mathrm{a}}=4.8 \times 10^{-11} & \mathrm{pK}_{\mathrm{a}}=10.32
\end{array}
$$

- $\mathrm{HCO}_{2} \mathrm{H} / \mathrm{NaHCO}_{2}$
- $\mathrm{H}_{2} \mathrm{CO}_{3} / \mathrm{NaHCO}_{3}$
- $\mathrm{HOCl} / \mathrm{NaOCl}$
- $\mathrm{H}_{3} \mathrm{BO}_{3} / \mathrm{NaH}_{2} \mathrm{BO}_{3}$
- $\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{NH}_{3}$
- $\mathrm{NaHCO}_{3} / \mathrm{Na}_{2} \mathrm{CO}_{3}$

New Target

When [Acio] $=[C$. Base $]$, the pH of the Buffer is equal to the pho of the Buffer acid.

When choosing a buffer system one usually solects one whose pho is closest to the desired pH.
9.10 What Are Buffers? - Making an Optimal Buffer Solution Adjusting the pH of a Buffer

Qcid Base				
$\left[\mathrm{HCO}_{2} \mathrm{H}\right]$	[NaHCO_{2}]	- $\mathrm{HCO}_{2} \mathrm{H} / \mathrm{NaHCO}_{2}$	$\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-4}$	$\mathrm{pK}_{\mathrm{a}}=3.74$
\bullet	-	- $\mathrm{H}_{2} \mathrm{CO}_{3} / \mathrm{NaHCO}_{3}$	$\mathrm{K}_{\mathrm{a}}=4.2 \times 10^{-7}$	$\mathrm{pK}_{\mathrm{a}}=6.38$
		$\begin{aligned} & \mathrm{HOCl} / \mathrm{NaOCl} \\ & \mathrm{H}_{3} \mathrm{BO}_{3} / \mathrm{NaH}_{2} \mathrm{BO}_{3} \end{aligned}$	$\mathrm{K}_{\mathrm{a}}=3.5 \times 10^{-8}$	$\mathrm{pK}_{\mathrm{a}}=7.46$
		- $\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{NH}_{3}$	$\mathrm{K}_{\mathrm{a}}=7.3 \times 10^{-10}$	$\mathrm{pK}_{\mathrm{a}}=9.14$
		- $\mathrm{NaHCO}_{3} / \mathrm{Na}_{2} \mathrm{CO}_{3}$	$\mathrm{K}_{\mathrm{a}}=5.6 \times 10^{-10}$	$\mathrm{pK}_{\mathrm{a}}=9.25$
∇	\checkmark	New Target	$\mathrm{K}_{\mathrm{a}}=4.8 \times 10^{-11}$	$\mathrm{pK}_{\mathrm{a}}=10.32$
0.10 M	0.10 M			

[HCO 2 H$] \uparrow, \mathrm{PH} \downarrow$

$\left[\mathrm{HCO}_{2}\right] \uparrow \uparrow, \mathrm{pH} \uparrow$

How many of the following aqueous solutions are buffers? 2
a) $0.24 \mathrm{M} \mathrm{HI}+0.18 \mathrm{M} \mathrm{NaI}$
d) $0.10 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}+0.18 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOK}^{2}$
c) $0.27 \mathrm{M} \mathrm{NH}_{4} \mathrm{Br}+0.31 \mathrm{M} \mathrm{NH}_{3}$
b) $0.34 \mathrm{M} \mathrm{NH}_{4} \mathrm{NO}_{3}+0.39 \mathrm{M} \mathrm{NaNO}_{3}$
X : HI is a strong acid.
\checkmark : Weak acid, $\mathrm{CH}_{3} \mathrm{COOH} /$ Conjugate base, $\mathrm{CH}_{3} \mathrm{COO}^{-}$
\checkmark : Weak arid, NH_{4}^{+}/ ConJugate base, NH_{3}
$\mathrm{X}: \mathrm{NO}_{3}^{-}$is not the conjugate base of NH_{4}^{+}

A 1 L solution contains 0.25 mol of NaCN and 0.15 mol of HCN.

1. Increase significantly
2. Decrease significantly
3. Increase
4. Increase slightly
5. Decrease slightly
6. Decrease
a) Addition of 0.1 mol of HCl will case the $[\mathrm{HCN}]$ to -5 .
$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CN}^{-}=\mathrm{HCN}($ aq $)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
b) Addition of 0.1 mol of HCl will case the POH to - 2 . $\mathrm{pH} \downarrow$ slightly $\ldots \mathrm{PH}+\mathrm{pOH}=14 \ldots \mathrm{POH} \uparrow$ slightly.
c) Addition of 0.1 mol of NaOH will case the [HCN] to - 6 .
$\mathrm{OH}^{-}+\mathrm{HCN}($ aq $)=\mathrm{H}_{2} \mathrm{O}(t)+\mathrm{CN}^{-}$
d) Addition of 0.2 mol of NaOH will case the pH to - $\quad \mathrm{I}$. Buffer capacity exceeded ... [HLN] $=0.15 \ldots\left[\mathrm{OH}^{-}\right]=0.2$
