Announcements - Lecture V-Tuesday, Sep 22 ${ }^{\text {nd }}$

Unregistered i,clicker(s)			Last Name	Unregistered student(s)	
Remote ID	Total	Average		First Name	Student ID
\# ${ }^{\text {\# }}$ 03754E3	1.00	1.00	Stanhope	Jeffrey	25912724
	1.00	1.00	Canty	Charles	26613426
\square \#99BB2301	1.00	1.00	Bloch	Eli	26624588
\square \#9E4B0EDB	1.00	1.00	Eicholtz	Nicolette	26828903
\square \#9E97878E	1.00	1.00	Galligan	Sydney	27206915
\square \#9E9D2A29	1.00	1.00	Piper	Michael	27252463
\square \#9EA8CAFC	1.00	1.00	Kenney	Joseph	28796534
\#9EB6FAD2	1.00	1.00	Dowd	Sam	29187604
\square \#9EC7CA93	1.00	1.00	Reineke	Eva	29281821
\# \square^{\square} EED3337E	1.00		Kerr	Cameron	29282396
		1.00	Postilnik	Leah	29288816
\square \#9ED83B7D	1.00	1.00	Yeh	Rebecca	29355691
			Escano	Katharyn	29560014
			Brennan	Megan	29658222
			Ortiz	Barbara	29970702

Announcements - Lecture V-Tuesday, Sep 22 ${ }^{\text {nd }}$

1. First Lab - Saturday, September $\mathbf{2 6}^{\text {th }}$... 1-4pm ... ISB 155/160 (A-E)
a) Read the Lab Policy prior to the this lab.
b) Print lab prior to coming to lab -- use the 'Print Friendly Version' located on the top left hand side of the page - this is the version that contains the 'Data Sheet' that you will hand in upon completing the lab.
c) Review the sample quiz on class web site - a short 6 question quiz will be administered at the start of the lab-questions taken from the sample questions.
2.

iClicker:
Choose any letter: A-E
3.6 How Do We Predict Formulas and Name Ionic Compounds.

B Transition Metals

What is the correct name for the ionic compound $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$?

$$
\mathrm{NO}_{3}^{-}=\text {nitrate }
$$

$$
\begin{gathered}
\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}: \quad ?+2(-1)=0 \\
?=+2
\end{gathered}
$$

Copper (11) nitrate

What is the correct name for the ionic compound CuSO_{4} ?
B
a) Copper (I) sulfate
b) Copper (I) sulfite
c) Copper(II) sulfate V
d) Copper(II) sulfite

$$
\mathrm{SO}_{4}^{2-}=\mathrm{sulfale}_{\text {ale }}
$$

$$
\begin{array}{r}
\mathrm{CuSO}_{4}: \quad ?+(-2)=0 \\
?=2
\end{array}
$$

Copper (II) sulfate
3.6 How Do We Predict Formulas and Name Ionic Compounds. Polyatomics

Give the correct chemical formula for the ionic compound, sodium phosphate.

Give the correct chemical formula for the ionic compound, aluminum carbonate.

Aluminum: Group 3A +3
Carbonate: $\mathrm{CO}_{3}{ }^{2-}$

Note the use of () when dealing with polyatomics.

$$
\mathrm{OH}_{2}\left(\mathrm{CO}_{3}\right)_{3} \operatorname{not} \mathrm{OH}_{2} \mathrm{C}_{3} \mathrm{O}_{4} \text { ! }
$$

4.3 What Is a Mole and How Do We Use It to Calculate Mass Relationships?

$$
\begin{aligned}
& \text { What is the mass in grams of } 1 \mathrm{~mole} \text { of } \mathrm{Li} \text {. } \\
& \qquad \begin{array}{crl}
6 \\
\mathrm{Li}: & 6.015 \mathrm{amu} & 7.42 \% \\
{ }^{7} \mathrm{Li}: & 7.016 \mathrm{amu} & 92.58 \% \\
& & \\
\mathrm{~N}=6.0221 \times 10^{23} \mathrm{~mol}^{-1} & 1 \mathrm{amu}=1.6606 \times 10^{-24} \mathrm{~g}
\end{array}
\end{aligned}
$$

I atom: $\quad 0.0742(6.015)+0.9258(7.016)=6.9417 \mathrm{amu}$

$$
\begin{array}{rl}
6.9417 \mathrm{amu} & 1.6606 \times 10^{-24} \mathrm{~g} \\
\hline 1 \mathrm{amu}
\end{array}=1.1527 \times 10^{-23} \mathrm{~g} g \text {. } 1.1527 \times 10^{-23} \mathrm{~g} .
$$

4.3 What Is a Mole and How Do We Use It to Calculate Mass Relationships. Molar Mass ... (Formula Weight)

Al	Si	P	S
13	14	15	16
26.98	28.09	30.97	32.07
$\mathrm{Ol}: 26.98 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$	$\longrightarrow S: 32.07{\mathrm{~g} \cdot \mathrm{~mol}^{-1}}$		

$\mathrm{C}_{4} \mathrm{H}_{10}: \quad 4(\mathrm{C})+10(\mathrm{H})$

$$
4(12.01)+10(1.01)=\frac{58.14}{4} \text { g. molar Mass }
$$

Reminder: $58.14 \mathrm{~g} \cdot \mathrm{~mol}^{-1}=\frac{58.14 \mathrm{~g}}{1 \mathrm{~mol}}$
4.3 What Is a Mole and How Do We Use It to Calculate Mass Relationships. Example 1

How many ATOMS of fluorine are present in 3.30 moles of BF_{3} ?

$$
N=6.023 \times 10^{23} \mathrm{~mol}^{-1}
$$

$$
\begin{array}{l|l}
3.30 \mathrm{~mol} \mathrm{BF}_{3} & 3 \mathrm{~F} \\
& 1 \mathrm{BF}_{3}
\end{array}=9.90 \mathrm{~mol} F \quad B F_{3}: 1 B+3 F
$$

4.3 What Is a Mole and How Do We Use It to Calculate Mass Relationships. Example 2

How many MOLES of fluorine are present in 3.09×10^{22} molecules of BF_{3} ?

$$
N=6.023 \times 10^{23} \mathrm{~mol}^{-1}
$$

$$
\begin{aligned}
& 3.09 \times 10^{22} \frac{\text { molecules } B F_{3}}{} \frac{1 \mathrm{~mol}}{6.023 \times 10^{23} \text { molecules }}=0.0513 \mathrm{~mol}^{\mathrm{BF}} \mathrm{~F}_{3} \quad 6.023 \times 10^{23} \mathrm{~mol}^{-1}=\frac{6.023 \times 10^{23}}{1 \mathrm{~mol}} \\
& 0.0513 \mathrm{~mol}_{\mathrm{mF}}^{3} \left\lvert\, \begin{array}{l|l}
3 \mathrm{~F} \\
\hline & 1 \mathrm{BF}
\end{array}=0.154 \mathrm{~mol} \mathrm{~F} \quad \mathrm{BF}\right.: 1 \mathrm{~B}+3 \mathrm{~F}
\end{aligned}
$$

5.3 What Is a Mole and How Do We Use It to Calculate Mass Relationships. Example 3

How many MOLES of water are present in $\mathbf{5 . 4 1}$ grams of this compound?

$$
0: 16.0
$$

$H: 1.01$
a) 0.1
b) 0.2
c) 0.3 V
d) 0.4
e) Help

$$
\begin{aligned}
& 5.41 \mathrm{~g} \mathrm{H} \mathrm{H} \rightarrow 3 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{H}_{2} \mathrm{O}: \quad 2(\mathrm{H})+\mathrm{O} \\
& 2(1.01)+16.0=18.02 \mathrm{~g} \cdot \mathrm{~mol}^{-1} \ldots \frac{18.02 \mathrm{~g}}{1 \mathrm{~mol}} \\
& \begin{array}{c|c}
5.41 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} & 1 \mathrm{md} \\
\hline & 18.02 \mathrm{~g}
\end{array}=0.3 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

5.3 What Is a Mole and How Do We Use It to Calculate Mass Relationships. Example 4

How many Grams of ethanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)$ are present in 0.61 moles of this compound?
$c: 12.01$

a) 46
b) 96
c) 28 l
d) Help
$0: 16.00$

$$
\begin{aligned}
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}: & 2(\mathrm{C})+6(\mathrm{H})+0 \\
& 2(12.01)+6(1.01)+16.00=46.08 \mathrm{~g}_{\mathrm{mol}} \\
-1 & \frac{46.08}{1} \mathrm{gol}
\end{aligned}
$$

$$
\begin{array}{c|c}
0.61 \mathrm{~mol}_{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}} & 46.08 \mathrm{~g} \\
\hline
\end{array}=28.1 \mathrm{~g} \mathrm{CH} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}
$$

4.4 How Do We Balance Chemical Equations?

Example 1

Balance the following chemical equation:

$$
\underline{2} \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\underline{3} \mathrm{C}(\mathrm{~s}) \quad=\quad \underline{4} \mathrm{Fe}(\mathrm{~s})+\underline{3} \mathrm{CO}_{2}(\mathrm{~g})
$$

Reactants								
Fe	2	2	4	4	4			
O	3	3	6	6	6			
C	1	1	1	1	3			

Products					
Fe	1	2	2	4	4
O	2	2	6	6	6
C	1	1	3	3	3

$$
2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{C}(\mathrm{~s})=4 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{CO}_{2}(\mathrm{~g})
$$

