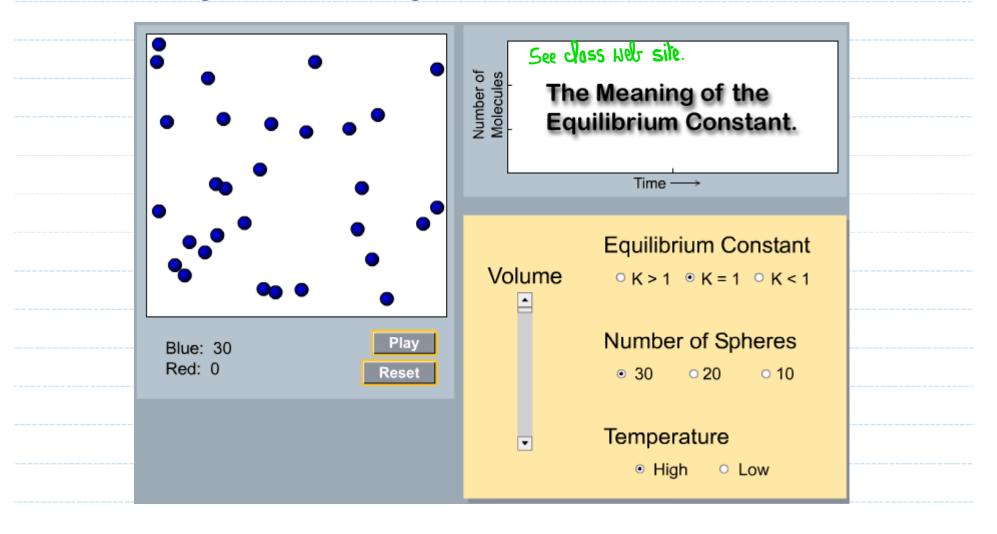
Announcements - Lecture XVI - Thursday, Nov 3rd


- 1. Fourth Lab Saturday, November 5th ... 1-4pm ... ISB 155/160 (A-E)
 - a) Print lab prior to coming to lab -- use the 'Print Friendly Version' located on the top left hand side of the page – this is the version that contains the 'Data Sheet' that you will hand in upon completing the lab.
 - b) Third set of Lab Owls will appear in Owl after this lab. There are a total of 4 sets of Lab Owls and they are worth 25% of the Lab Grade.
- 2. Exam II: Tuesday, November 8th, 1:00-2:15, In Class
- 3.

iClicker:

Choose any letter: A-E

7.6 What is an Equilibrium Constant and How Do We Use It?

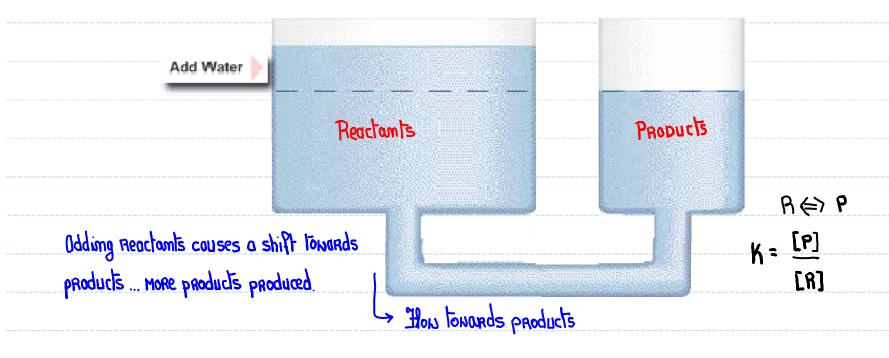
The Significance of the Magnitude of K

7.6 What is an Equilibrium Constant and How Do We Use It? The Significance of the Magnitude of K

- 1) K > 1 : Of equilibrium the reaction favors products.
- 2) K << 1 : Ot equilibrium the Reaction favors reactants.
- 3) K ~ 1 : Ot equilibrium significant quantities of products and reactants present

K>>1: Product favored at equilibrium.

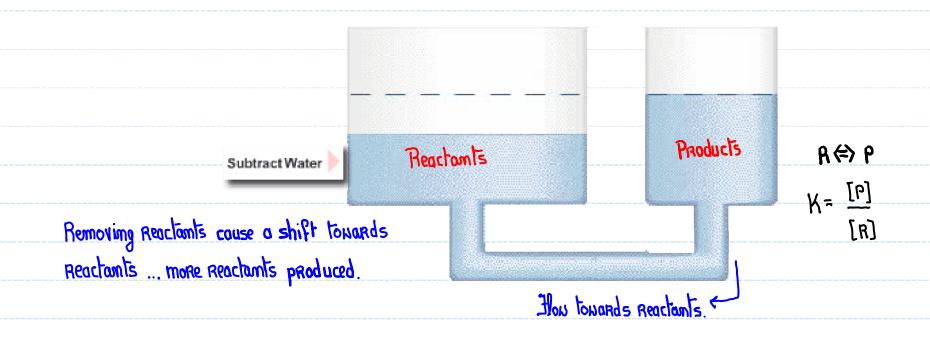
2) $HF(ag) + H_2O(1) \iff H_3O^+ + F^ K = 7.6 \times 10^{-5} @ 25^{\circ}C$ $K \ll 1 : Reactant favored at equilibrium.$


3) Hb + 02 (=> Hb02

K ≈ 12 @ 25°C

K~1: Significant quantities of reactants and products present at equilibrium.

7.7 What Is Le Chatelier's Principle Adding Reactants.


Chemistry Interactive: LeChatelier's Principle - The Water Tank Analogy

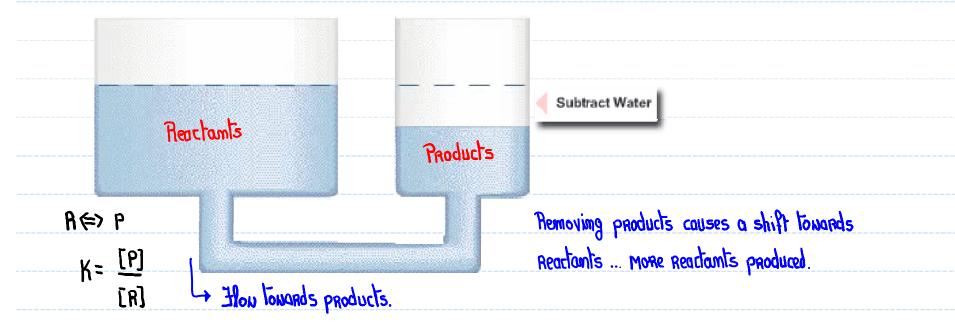
adding R changes the value of [R] ... Reaction wants to return to the original value of [R] ... ie back to K.

7.7 What Is Le Chatelier's Principle Removing Reactants.

Chemistry Interactive: LeChatelier's Principle - The Water Tank Analogy

Removing R changes the value of $\overline{[R]}$... Reaction nants to Return to the original value of $\overline{[R]}$... ie back to K.

7.7 What Is Le Chatelier's Principle Adding Products.


Chemistry Interactive: LeChatelier's Principle - The Water Tank Analogy

adding P changes the value of [P] ... Reaction wants to Return to the original value of [P] ... ie back to K.

7.7 What Is Le Chatelier's Principle Removing Products.

Chemistry Interactive: LeChatelier's Principle - The Water Tank Analogy

Removing P changes the value of [P] ... reaction wants to return to the original value of [R] ... ie back to K.

7.7 What Is Le Chatelier's Principle Adding/Removing Reactant and Products

HCN is a weak acid – $HCN(aq) + H_2O(I) \Leftrightarrow H_3O^+ + CN^-$ Removal of H_3O^+ from this equilibrium will cause the [CN-] to

- a) Increase 🗸
- b) Decrease
- c) Remain unchanged
- d) Impossible to determine

7.7 What Is Le Chatelier's Principle Adding/Removing Reactant and Products

HCN is a weak acid – $HCN(aq) + H_2O(I) \Leftrightarrow H_3O^+ + CN^-$ Addition of OH⁻ to this equilibrium will cause the [CN⁻] to

- a) Increase 🗸
- b) Decrease
- c) Remain unchanged
- d) Impossible to determine

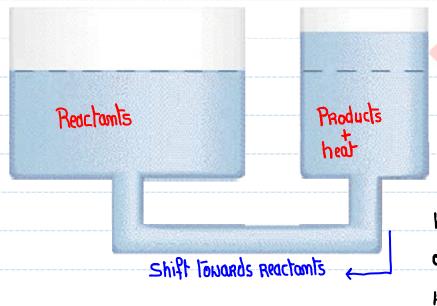
Of first glance you might think c), since OH is meither a product or a reactant ... but!

HCN(ag) + H2O(8)
$$\Leftrightarrow$$
 H30[†] + CN⁻

OH⁻ = 2 H2O(8)

Odding OH⁻ Removes H30[†], a product

Shift towards products ... [CN⁻]T


7.7 What Is Le Chatelier's Principle

Changing the Temperature – Exothermic

Heat is a product'

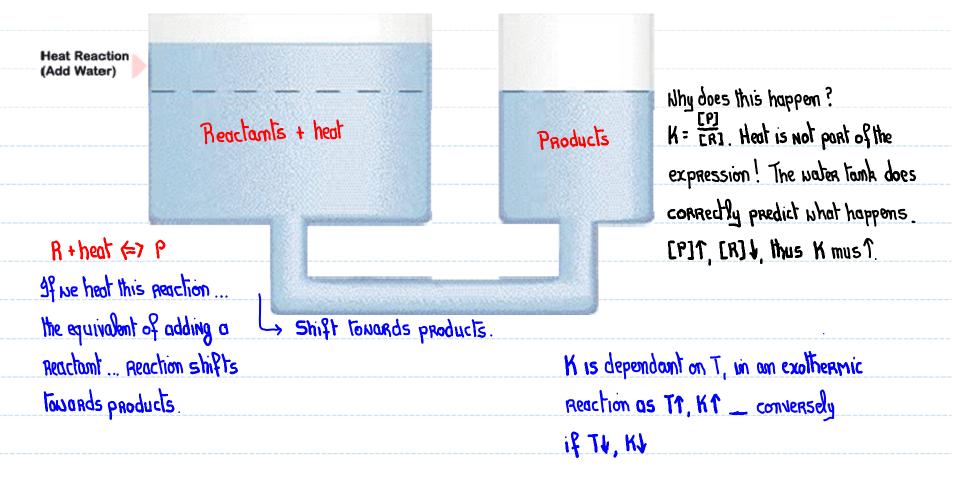
Heat Reaction (Add Water)

Chemistry Interactive: LeChatelier's Principle - The Water Tank Analogy

P (=> P + heat

If we heat this Reaction ... the equivalent of adding a product ... Reaction shifts lowerds Reactants

Why does this happen? $K = \frac{[P]}{[R]}$. Heat is not part of the expression! The water tank does correctly predict what happens. [R]1, [P]1 thus K must 1


K is dependant on T, in an endothermic Reaction as T1, K1 _ conversely T1, K1

7.7 What Is Le Chatelier's Principle

Changing the Temperature – Endothermic

Heat is a Reaction 'Heat is a

Chemistry Interactive: LeChatelier's Principle - The Water Tank Analogy

7.7 What Is Le Chatelier's Principle Changing the Temperature – Summary

EQUILIBRIUM Shift ACTION MHY $R \Leftrightarrow P + heat$ 1) Exolhermic: add heat (heat the RXN) Shift towards readomts K7 Romove heat (cool the AXN) Shift lowards products KT 2) Endolhermic: R+ heat & P Odd heat (heat the AXN) Shift towards products KT Romove heat (cool the AXN) Shift towards reactions **KT**

- 1) adding and Removing Reactaints and products does not change the value of K.
- 2) Heating or cooling a reaction, changes the value of K. Whether K uncreases or decreases depends on whether the reaction is exothermic or endothermic.

7.7 What Is Le Chatelier's Principle Changing the Temperature

The production of ammonia is an exothermic process – $N_2(g) + 3 H_2(g) \Leftrightarrow 2 NH_3(g)$

To maximize the [NH₃] at equilibrium it is best to

- a) Heat the reaction
- b) Cool the reaction ✓
- c) Leave it as is!