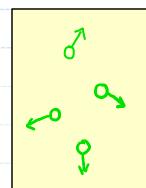

Announcements – Lecture XVII – Thursday, Nov 10 th			
1. RADY	iClicker: Choose any letter: A-E		
		Slide - 141	

7.7 What Is Le Chatelier's Principle **Changing the Temperature**

Equilibria and Volume Interactive figure on class net site.


What is happening to K as you increase the temperature?

K is increasing ... shift towards products ... must be endothermic.

7.7 What Is Le Chatelier's Principle

Changing the Pressure – Gas Phase Equilibria

PRESSURE: YORCE PER UNIT area.

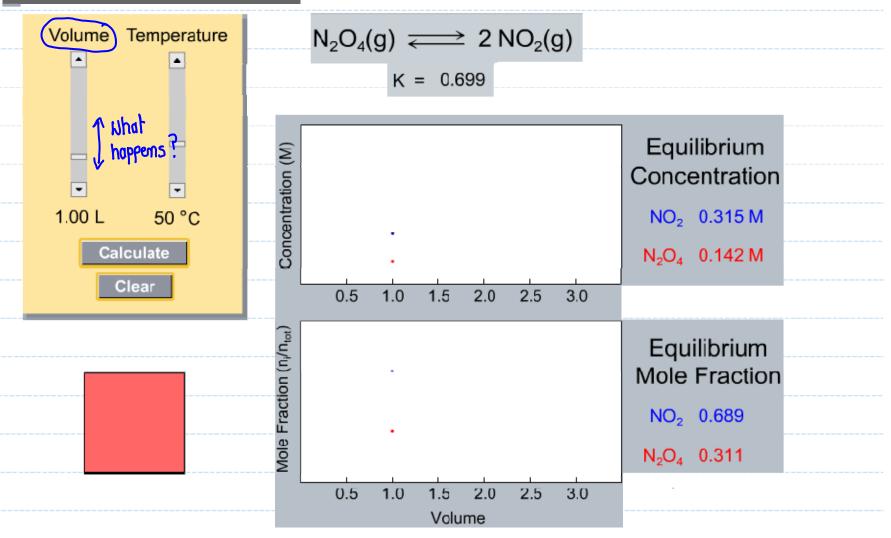
- 1) Collisions
- 2) Momentum

$$K = \frac{[b]}{[b]}$$

GAS Reactions: • = gas molecule

$$K = \frac{[P]}{[R]}$$

$$K = \frac{[P][P]}{[R]}$$

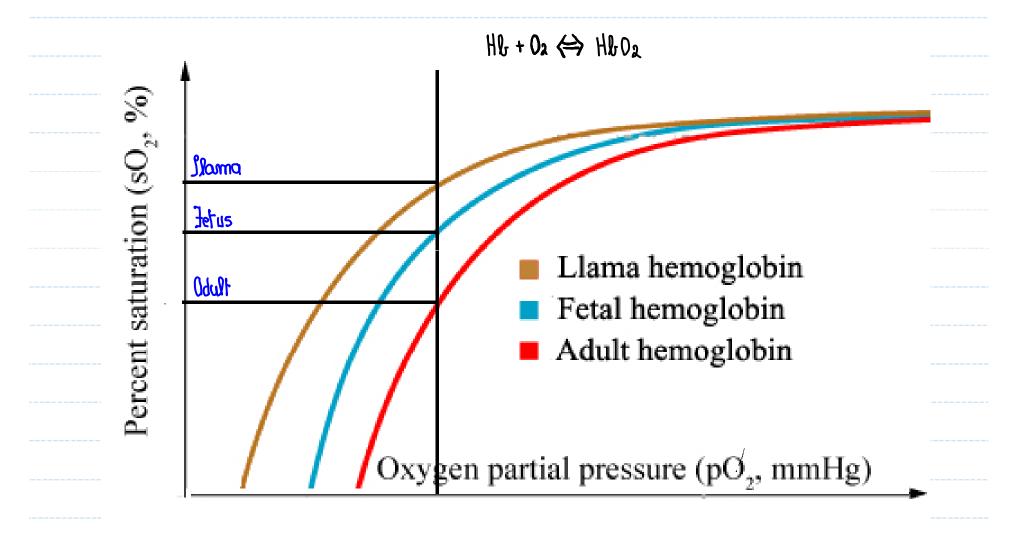

3) • + •
$$\Leftrightarrow$$
 •

7.7 What Is Le Chatelier's Principle

Changing the Pressure – Gas Phase Equilibria

Equilibria and Volume

Interactive figure on class neb site



7.7	What Is Le Chatelier's Principle Changing the Pressure – Gas Phase Equilibria		
	Reactants (g)	Products (g)	
	Action:	EQUILIBRIUM SHIFT:	
	Volume 1: Pressure V	Jouands the side with the greater mumber	
		of gas molecules _ trying to restore the	
		pressure if it cam.	
	Volune Ir , Pressure T	Jouards the side with the fenest mumber	
		of gas molecules _ trying to Reduce the	
		pressure if it can.	
		•	

8.8 What Is Le Chatelier's Principle Changing the Pressure – Summary

Action: **EQUILIBRIUM** SHIFT: MHY: O3(g) + $NO(g) \iff O_2(g) + NO_2(g)$ 0+0台0+0 The [03][NO] Ratio 15 wn affected, the No shift. AU br No shift. VI, PT system Remains at equilibrium. 2 NOCK9 2 NO(g) + C/2(g) 2) [10]3[01] The [Noce]2 Ratio is changed, the system VT. PL Towards products. shifts to restore this ratio back to K. VI, PT Towards Reactomits. 2 NH3(g) + 3 H2(g) (=) Na(g) [NH3]2 The [Na][H] Ratio is changed, the system NJ PI Towards reactants. VJ, PT shifts to restore this ratio back to K. Towards products.

8.1 What Are Acids and Bases?

ACID: O substance that produces 430 ions in aqueous solution.

$$\begin{array}{ccccc} HA(oq) & + & H_2O(1) & \longrightarrow & H_3O^{\dagger} & + & A^{-} \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{array}$$

BASE: a substance that produces OH ions in aqueous solution.

$$\begin{array}{ccc}
B(00) & + H_{2}O(1) & \longrightarrow & BH^{+} + OH^{-} \\
& & & & & & & \\
& & & & & & \\
\end{array}$$

8.2 How Do We Define the Strength of Acids and Bases?

Acios:

STRONG: HA (ag) + H20(8)
$$\rightarrow$$
 H30[†] + A⁻ ~100% ... only 6

WEAK:
$$HA(aq) + H20(9) \iff H30^{\dagger} + A^{-}$$

BASES:

STRONG: "B(ag) +
$$H_2O(1)$$
 \longrightarrow $BH^+ + OH^-$ ~ 100% ... only 4 soluble

No $OH(ag) \rightarrow Na^+ + OH^ L_1OH$, No OH , KOH, Ba(OH)₂

WERN:
$$B(q_1) + H_2O(8) \iff BH^+ + OH^-$$

NH3(qq) + $H_2O(8) \iff NH_4^+ + OH^ K_b = \frac{[BH^+][OH^-]}{[B]}$