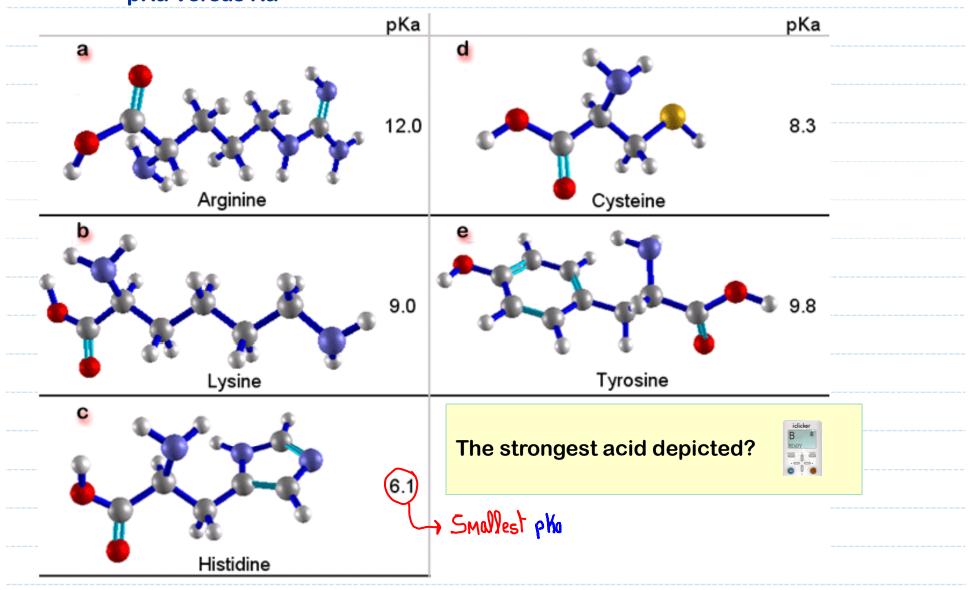
Announcements – Lecture XVIII – Tuesday, Nov 15 th									
1. Selicke B	iClicker: Choose any letter:	4 <i>-E</i>							
		₽ ↓ ♦ ▶	Slide - 150						

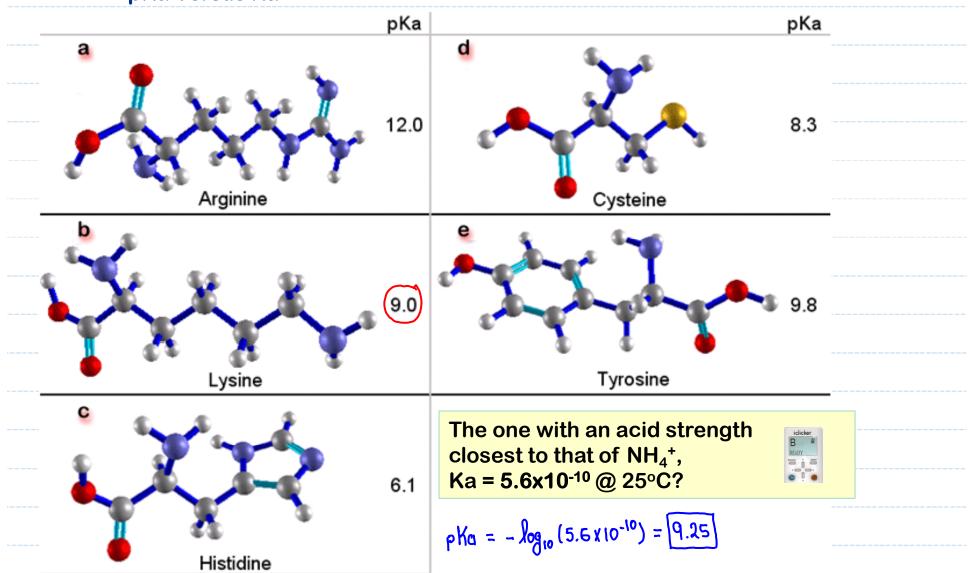
8.2 How Do We Define the Strength of Acids and Bases?

Sulfuric acid H ₂ SO ₄ large Hexa Hydrochloric acid HCl large Carb Nitric acid HNO ₃ large Hydro	ne of Acid aaquaaluminum ion bonic acid rogen sulfide ydrogen phosphate ion	Acid A1(H ₂ O) ₆ 3+ H ₂ CO ₃ H ₂ S	7.9 × 10 ⁻⁶ 4.2 × 10 ⁻⁷ 1 × 10 ⁻⁷
Hydrochloric acid HCl large Carb Nitric acid HNO ₃ large Hydr	bonic acid rogen sulfide	H ₂ CO ₃ H ₂ S	4.2×10^{-7}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ochlorous acid nonium ion rocyanic acid aaquairon(II) ion rogen carbonate ion rogen phosphate ion	H ₂ PO ₄ ⁻ HC1O NH ₄ ⁺ HCN Fe(H ₂ O) ₆ ²⁺ HCO ₃ ⁻ HPO ₄ ²⁻ H ₂ O HS ⁻	6.2 × 10 ⁻⁸ 3.5 × 10 ⁻⁸ 5.6 × 10 ⁻¹⁰ 4.0 × 10 ⁻¹⁰ 3.2 × 10 ⁻¹⁰ 4.8 × 10 ⁻¹¹ 3.6 × 10 ⁻¹³ 1.0 × 10 ⁻¹⁴ 1 × 10 ⁻¹⁹

For weak acids ... the greater the Ka ... the stronger the acid.



$$PKa = -log_{10} (4.0 \times 10^{-10}) = 9.38$$


Which is the stronger acid?

- o) The one with the largest Ka ... HF
- b) The one with the smallest pka ... HF

8.5 How Do We Use Acid Ionization Constants? pKa Versus Ka

8.5 How Do We Use Acid Ionization Constants? pKa Versus Ka

8.7 Acid Base Properties of Pure Water Autoionization of Water

$$H_2O(9) + H_2O(9) \Leftrightarrow H_3O^{\dagger} + OH^{-}$$

$$K = [H_3O^{\dagger}][OH^{-}]$$

$$\downarrow_{W}$$

$$[H_30^{\dagger}][OH_3] = 1 \times 10^{-14}$$

$$[H_30^{\dagger}] = 1 \times 10^{-7}$$

Neulral:
$$[H_30^+] = [OH^-]$$

$$\frac{\text{Ocidic}}{\text{Color}} : \left[H_3 O^{\dagger} \right] > \left[O H^{-} \right]$$

Basic:
$$[H_30^+] < [OH^-]$$

8.7	Acid	Base I	Propertie	es of F	oure	Water
-----	------	--------	------------------	---------	------	-------

Curiosity!

The autoionization of water is an endothermic process. $H_2O(I) + H_2O(I) \Leftrightarrow H_3O^+ + OH^-$

Thus as the temperature increases then – the $[H_3O^+]$ should –

- a) Decrease
- b) Increase √
- c) Remain the same

H₂O(8) + H₂O(8) + heat
$$\iff$$
 H₃O⁺ + OH⁻

Increase T, equivalent to adding a reactaint.

Requisibrium shift, [H₃O⁺] 1

8.7 Acid Base Properties of Pure Water

Curiosity!

With the $[H_3O^+]$ increasing with increasing temperature this must mean that as the temperature of water increases the water –

a) becomes acidic

b) becomes basic