Announcements - Lecture XIX - Thursday, Nov 17 ${ }^{\text {th }}$

1. iClicker:

Choose any letter: A-E
8.7 Acid Base Properties of Pure Water Example I

An aqueous solution has a hydronium ion, $\mathrm{H}_{3} \mathrm{O}^{+}$, concentration of $1 \times 10^{-11} \mathrm{M} @ 25^{\circ} \mathrm{C}$. This solution is -

$$
K W=1 \times 10^{-14} @ 25^{\circ} \mathrm{C}
$$

a) acidic
b) basic $\sqrt{ }$
c) neutral

$$
\begin{aligned}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] } & =1 \times 10^{-14} \\
\left(1 \times 10^{-11}\right)\left[\mathrm{OH}^{-}\right] & =1 \times 10^{-14} \\
{\left[\mathrm{OH}^{-}\right] } & =\frac{1 \times 10^{-14}}{1 \times 10^{-11}} \\
& =1 \times 10^{-3} \\
{\left[\mathrm{OH}^{-}\right] } & >\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
\end{aligned}
$$

8.8 What are pH and pOH ?

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \quad \mathrm{POH}=-\log _{10}\left[\mathrm{OH}^{-}\right]
$$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14} @ 25^{\circ} \mathrm{C}
$$

Jake $\log _{10}$ of both sides:

$$
\log _{10}\left\{\left[\mathrm{H}_{3} 0^{+}\right]\left[\mathrm{OH}^{-}\right]=\log _{10}\left(1 \times 10^{-14}\right)\right.
$$

Jidy this up

$$
\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\log _{10}\left[\mathrm{OH}^{-}\right]=-14
$$

Multiph both sides $\operatorname{ly}-1: \quad-\log _{10}\left[\mathrm{H}_{3} 0^{+}\right]-\log _{10}\left[\mathrm{OH}^{-}\right]=14$

DOH

$$
\mathrm{PH}+\mathrm{POH}=14 @ 25^{\circ} \mathrm{C}
$$

9.8

What are pH and pOH ? pH - Acidity and Basicity

Plant Preferences for pH			
Very acid $5.0-5.8$	Moderately acid 5.5-6.8	Slightly acid 6.0-6.8	Very alkaline 7.0-8.0
azalea blueberry celeriac chickory crabapple cranberry eggplant endive heathers huckleberry hydrangea Irish potato lily lupine oak raspberry rhododendron rhubarb shallot sorrel spinach beet spruce wild strawberry sweet potato watermelon white birch	bean begonia Brussels sprouts calla camellia carrot collard greens corn fuchsia garlic lima bean parsley pea peppers pumpkin radish rutabaga soybean squash sunflower tomato turnip viola	asparagus beet bok choy broccoli gooseberry grape kale kohirabi lettuce mustard muskmelon oats okra onion pansy peach peanut pear peony rice spinach Swiss chard	acacia bottlebrush cabbage cauliflower celery Chinese cabbage cucumber date palms dusty miller eucalyptus geranium oleander olive periwinkle pinks pomegranate salt cedar tamarisk thyme

8.8 What are pH and pOH ? pH - Acidity and Basicity - Example I

An aqueous solution has an $\left[\mathrm{OH}^{-}\right]=1 \times 10^{-5}-$ the pH of this solution is: 9

$$
\begin{aligned}
\mathrm{POH} & =-\log _{10}\left(1 \times 10^{-5}\right) \\
& =5 \\
\mathrm{PH}+\mathrm{POH} & =14 \\
\mathrm{PH}+5 & =14 \\
\mathrm{PH} & =9
\end{aligned}
$$

$8.8 \quad$ What are pH and pOH

 pH - Acidity and Basicity - Example IIa) A 0.15 M aqueous solution of an acid HA has a measured pH equal to 0.82
b) A 0.45 M aqueous solution of an acid HB has a measured pH equal to $0.69 \sqrt{ }$
c) Tom, I have no idea.

Which solution is more acidic?

The more acidic solution ... the one wilt the smallest pht
8.8 What are pH and pOH
pH - Acidity and Basicity - Example III
a) A 0.15 M aqueous solution of an acid HA has a measured pH equal to 0.82
b) A 0.45 M aqueous solution of an acid HB has a measured pH equal to 0.69
c) Tom, I have no idea.

Which is the stronger acid?
a)

$$
\begin{aligned}
p H & =-\log _{10}\left[H_{3} 0^{+}\right] \\
& =-\log _{10}(0.15)=0.82 \quad \text { expected pH if HA } 15 \text { a strong acid ... } 100 \%
\end{aligned}
$$

b)

$$
\begin{aligned}
p H & =-\log _{10}\left[H_{3} 0^{+}\right] \\
& =-\log _{10}(0.45)=0.35 \quad \text {... expected pH if HB is a strong arid ... } 100 \%
\end{aligned}
$$

$$
\begin{aligned}
& H A(a q)+H_{2} O(P) \rightarrow H_{3} O^{+}+A^{-} \ldots \text { strong acid. } \\
& H B(a q)+H_{2} O(P) \Leftrightarrow H_{3} O^{+}+B^{-} \ldots \text { weak acid. }
\end{aligned}
$$

8.10

What Are Buffers?

8.10 What Are Buffers? - How Do They Resist Drastic pH Changes Acid-Base Reactions

W: Weak
5: Strong
A: Acid
B: Bose

1. $\quad S A+5 B=100 \%$

$$
\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}=\mathrm{H}_{2} \mathrm{O}(\mathrm{X})+\mathrm{H}_{2} \mathrm{O}(\mathrm{X})
$$

2. $S A+W B=100 \%$

$$
\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NH}_{3}(0 \mathrm{q})=\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}(\mathrm{R})
$$

3. $W A+5 B=100 \%$

$$
\mathrm{HCN}(\text { (q) })+\mathrm{OH}^{-}=\mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O}(\ell)
$$

4. $W A+W B=$?
