Announcements - Lecture VI - Thursday, Sep 22 ${ }^{\text {nd }}$

1. First Lab - Saturday, September $24^{\text {th }}$... 1-4pm ... ISB 155/160 (A-E)
a) Read the Lab Policy prior to the this lab.
b) Print lab prior to coming to lab -- use the 'Print Friendly Version' located on the top left hand side of the page - this is the version that contains the 'Data Sheet' that you will hand in upon completing the lab.
c) Review the sample quiz on class web site - a short 6 question quiz will be administered at the start of the lab-questions taken from the sample questions.
2.

iClicker:
Choose any letter: A-E
4.3 What Is a Mole and How Do We Use It to Calculate Mass Relationships. Example 2

How many MOLES of fluorine are present in 3.09×10^{22} molecules of BF_{3} ?

$$
N=6.023 \times 10^{23} \mathrm{~mol}^{-1}
$$

$$
\begin{aligned}
& 3.09 \times 10^{22} \frac{\text { molecules } B F_{3}}{} \frac{1 \mathrm{~mol}}{6.023 \times 10^{23} \text { molecules }}=0.0513 \mathrm{~mol}^{\mathrm{BF}} \mathrm{~F}_{3} \quad 6.023 \times 10^{23} \mathrm{~mol}^{-1}=\frac{6.023 \times 10^{23}}{1 \mathrm{~mol}} \\
& 0.0513 \mathrm{~mol}_{\mathrm{mF}}^{3} \left\lvert\, \begin{array}{l|l}
3 \mathrm{~F} \\
\hline & 1 \mathrm{BF}
\end{array}=0.154 \mathrm{molF} \quad B F_{3}\right.: \mathrm{IB}+3 \mathrm{~F}
\end{aligned}
$$

5.3 What Is a Mole and How Do We Use It to Calculate Mass Relationships. Example 3

How many MOLES of water are present in $\mathbf{5 . 4 1}$ grams of this compound?

$$
0: 16.0
$$

$H: 1.01$
a) 0.1
b) 0.2
c) 0.3 V
d) 0.4
e) Help

$$
\begin{aligned}
& 5.41 \mathrm{~g} \mathrm{H} \mathrm{H} \rightarrow 3 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{H}_{2} \mathrm{O}: \quad 2(\mathrm{H})+\mathrm{O} \\
& 2(1.01)+16.0=18.02 \mathrm{~g} \cdot \mathrm{~mol}^{-1} \ldots \frac{18.02 \mathrm{~g}}{1 \mathrm{~mol}} \\
& \begin{array}{c|c}
5.41 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} & 1 \mathrm{md} \\
\hline & 18.02 \mathrm{~g}
\end{array}=0.3 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

5.3 What Is a Mole and How Do We Use It to Calculate Mass Relationships. Example 4

How many Grams of ethanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)$ are present in 0.61 moles of this compound?
$c: 12.01$

a) 46
b) 96
c) 28 l
d) Help
$0: 16.00$

$$
\begin{aligned}
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}: & 2(\mathrm{C})+6(\mathrm{H})+0 \\
& 2(12.01)+6(1.01)+16.00=46.08 \mathrm{~g} \cdot \mathrm{~mol}^{-1} \ldots \frac{46.08}{1 \mathrm{gd}}
\end{aligned}
$$

$$
\begin{array}{c|c}
0.61 \mathrm{~mol}_{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}} & 46.08 \mathrm{~g} \\
\hline
\end{array}=28.1 \mathrm{~g} \mathrm{CH} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}
$$

4.4 How Do We Balance Chemical Equations?

Example 1

Balance the following chemical equation:

$$
\underline{2} \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\underline{3} \mathrm{C}(\mathrm{~s}) \quad=\quad \underline{4} \mathrm{Fe}(\mathrm{~s})+\underline{3} \mathrm{CO}_{2}(\mathrm{~g})
$$

Reactants								
Fe	2	2	4	4	4			
O	3	3	6	6	6			
C	1	1	1	1	3			

Products					
Fe	1	2	2	4	4
O	2	2	6	6	6
C	1	1	3	3	3

$$
2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{C}(\mathrm{~s})=4 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{CO}_{2}(\mathrm{~g})
$$

4.4 How Do We Balance Chemical Equations?

Example 2

Balance the following chemical equation:

$$
\ldots \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+\underline{7 / 2} \mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Reactants							
C	2	2	2	2			
H	6	6	6	6			
O	2	2	2	7			

Products					
C	1	2	2	2	
H	2	2	6	6	
O	3	5	7	7	

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+\underset{\substack{\left(\frac{7}{2}\right) \mathrm{O}_{2}(g) \\
\rightarrow}}{ }=2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& 2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g})=4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

4.4 How Do We Balance Chemical Equations?

Example 3
a) 1
d) 4
b) 2
e) 5
c) 3

Balance the following chemical equation:

$$
\ldots \mathrm{AgNO}_{3}(\mathrm{aq})+\ldots \mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq}) \quad=\quad-\mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})+\ldots \mathrm{KNO}_{3}(\mathrm{aq})
$$

? What is taking so long!!
4.4 How Do We Balance Chemical Equations?

Example 3
a) $1 /$
d) 4
b) 2
e) 5
c) 3

Balance the following chemical equation:

$$
\underline{2} \mathrm{AgNO}_{3}(\mathrm{aq})+\ldots \mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq}) \quad=\quad \underline{?} \mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})+\underline{2} \mathrm{KNO}_{3}(\mathrm{aq})
$$

Reactants					l
Ag	1	2	2		
NO_{3}	1	2	2		
K	2	2	2		
CrO_{4}	1	1	1		

Products							
Ag	2	2	2				
NO_{3}	1	1	2				
K	1	1	2				
CrO_{4}	1	1	1				

$$
2 \mathrm{AgNO}_{3}(\mathrm{qq})+\mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{qq})=\mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{qq})
$$

Polyatomic ions ... when remaining intact ... treat as a single entity.

