
Announce	ouncements – Lecture XVIII – Wednesday, June 17 ^h				sday, June 17 ^h						
1. Final Lab:										155B wation in Class Owls)	
	5	a	<u> </u>	<u> </u>	5		<u> </u>	4		Slide -	

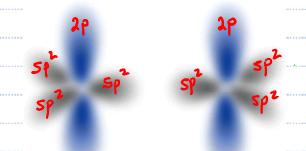
Quiz 14

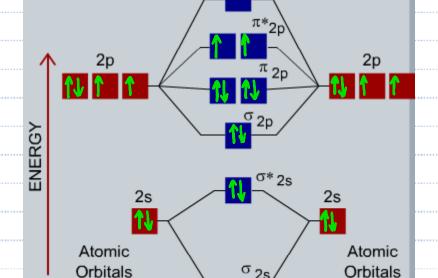
Class #:

Last Name:

H AX_2E_0 H H C = C = C - H AX_3E_0 AX_3E_0

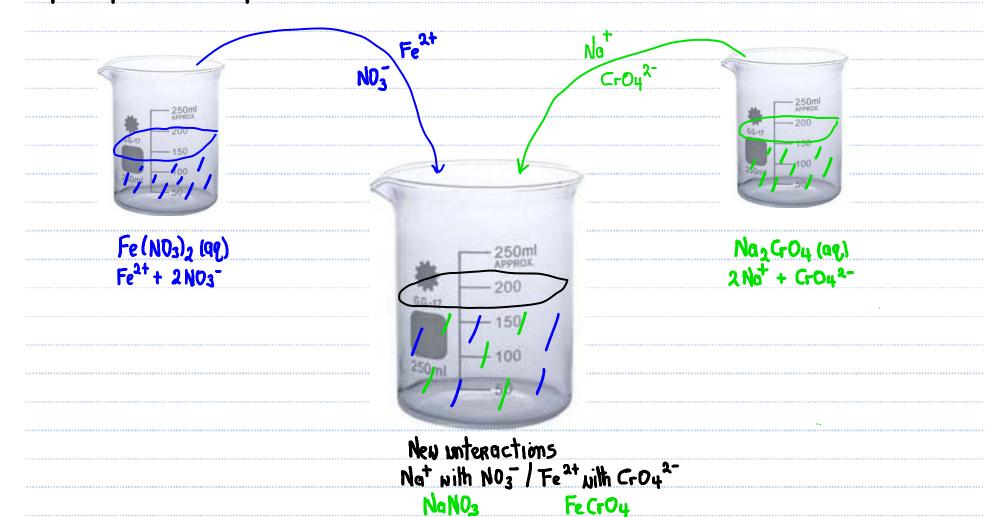
- 1. The sigma bond formed between C1 and C2 is the result of the overlap of an span hybrid orbital on C1 with an span hybrid orbital on C2.
- 2. The sigma bond formed between C3 and hydrogen is the result of the overlap of an spl hybrid orbital on C3 with the 15 orbital on H.
- 3. The formation of a pi bond (not shown) between C1 and C2 is the result of the overlap of the property orbital on C1 with the property orbital on C2.


9.4 **Molecular Orbital Theory**


D: Magnetic Properties of O₂

AXIEZ AXIEZ

Net Sigma Bonds: 1-1+1=1Net Pi Bonds: $1+1-\frac{1}{2}-\frac{1}{2}=1$


Magnetism

Para Magnetic

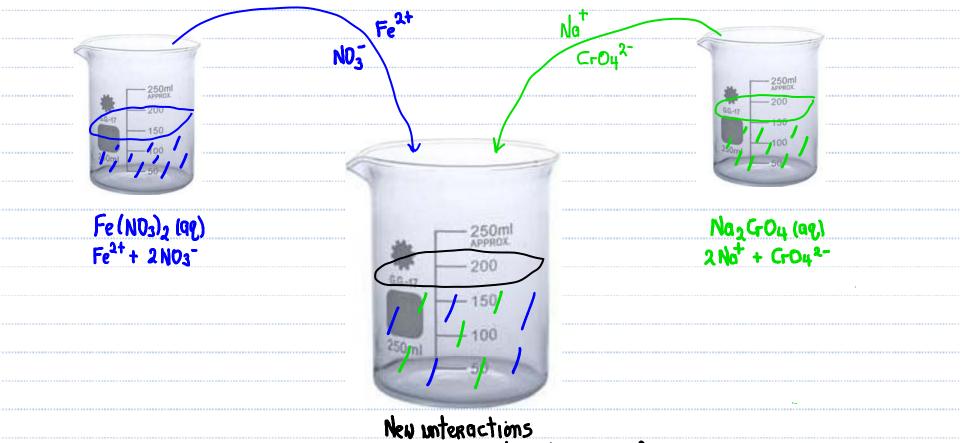
Molecular Orbitals

A: Precipitation Reactions -- Predicting

If aqueous solutions of iron(II) nitrate and sodium chromate are mixed will a precipitate be expected to form?

4.2 Aqueous Solutions

B: Solubility of Ionic Compounds


	ble Ionic Compounds
1	All sodium, potassium and ammonium salts are soluble.
2.	All nitrate, acetate, chlorate and perchlorate salts soluble.
3.	All chloride, bromide and iodide salts are soluble.
	EXCEPT those that contain: lead, silver or mercury(I) (Hg2 ^{2*}).
4.	All fluoride salts are soluble.
	EXCEPT those that contain: magnesium, calcium, strontium, barium or lead.
5.	All sulfate salts are soluble.
	EXCEPT those that contain: calcium, silver, mercury(I), strontium, barium or lead.
Not	Soluble Ionic Compounds
1.	All hydroxide and oxide salts are not soluble.
	EXCEPT those that contain: sodium, potassium, ammonium or barium.
2.	All sulfide salts are not soluble.
	EXCEPT those that contain: sodium, potassium or ammonium.
3.	(All) carbonate, phosphate, chromate, and oxide salts are not soluble.
	EXCEPT those that contain: sodium, potassium or ammonium.

Na NO3: all you need is one ... Na NO3 is soluble ... Na NO3 (99)

Fe Croy: Not soluble ... Fe Croy(s)

A: Precipitation Reactions -- Predicting

If aqueous solutions of iron(II) nitrate and sodium chromate are mixed will a precipitate be expected to form? YES ... Fe [r04(s)

New unteractions
Nat with NO3 / Fe²⁺ with CrO4²⁻
NaNO3 Fe CrO4

B: Net Ionic Equations

Give the Net Ionic Equation for the reaction that takes place when aqueous solutions of iron(II) nitrate and sodium chromate are mixed?

$$Fe(NO_3)_2(Q_1) + Na_2(CrO_4(Q_1)) = Fe(CrO_4(S)) + 2 NaNO_3(Q_1)$$

$$Fe^{2^{+}} + 2N0_{3}^{-} + 2Na^{+} + CrO_{4}^{2^{-}} = FeCrO_{4}(s) + 2Na^{+} + 2NO_{3}^{-}$$

Spectator ions ... Romove them

$$Fe^{2t} + C_{t}O_{\psi}^{2-} = FeC_{t}O_{\psi}(s)$$

NIE: NET IONIC EQUATION

B: Net Ionic Equations

Give the Net Ionic Equation for the reaction that takes place when aqueous solutions of potassium sulfide and lead(II) nitrate are mixed?

$$K_{1}S(qq) + P_{1}S(N0_{3})_{2}(qq)$$
 $[K^{+}, S^{2-}]$
 $[P_{2}S^{2+}, N0_{3}]$
 $[RN0_{3}(qq)$
 $P_{2}S(S)$

$$K_2S(qq) + P_b(NO_3)_2(qq) = P_bS(s) + 2KNO_3(qq)$$

B) Determine the NIE

$$K_{2}S(q_{1}) + Pb(NO_{3})_{2}(q_{1}) = PbS(s) + 2KNO_{3}(q_{1})$$

$$2K^{+} + 5^{2} + Pb^{2} + 2N0_{3}^{-} = Pb - 5(s) + 2K^{+} + 2N0_{3}^{-}$$

B: Net Ionic Equations

Write the net ionic equation for the reaction that takes placed when aqueous solutions of ammonium sulfide and chromium(III) iodide are combined?

$$(NH_{4})_{3}S(aq) + CrI_{3}(aq)$$

 $[NH_{4}^{+}, 5^{2}]$ $[Cr^{3+}, I^{-}]$
 $NH_{4}I(aq)$ $Cr_{2}S_{3}(s)$

$$(NH_4)_2S(qq) + CrI(3)(qq) = Cr_2S_3(5) + NH_4I(qq)$$

Not balanced

$$2 C_r^{3+} + 35^{2-} = C_{r_2}S_3(s)$$