1. Class Web Site:	www.chem.umass.edu/genchem		
1. Olass Web Oite.	www.criem.amass.caa/genonem		
2. Daily Quizzes:	Start, Wednesday, May 20 th		
	(No make-ups 2 scores dropped)		
3. Add/Drop:	Friday, May 22 th		
4. No Class:	Monday, May 25 th , Memorial Day		
5. First Lab:	Tuesday, May 26 th , ISB 155		

1.4 Unit Conversions

a) Dimensional Analysis

1.4a Example_1

Prior to the metric system, the common unit of weight was the pound (lb). Under the S.I. System, 1 lb = 453.5g. If an old recipe calls for 9 ounces of flour (16 oz = 1 lb), how many grams of flour is this equivalent to?

$$0.5625 \text{ lb} 453.5 \text{ g} = 255g$$

? What about significant figures?

1.4 Unit Conversions

a) Dimensional Analysis

- a) $4.5 \times 10^5 \text{ X}$
- b) $4.5 \times 10^7 \checkmark$

c) 45

- d) 0.45
- e) Oops ... I made a mistake

1.4a Example_2

A field is 100m long by 45m wide. What is the area in cm²? (1m = 100cm)

To illustrate the power of dimensional analysis, first find the area in m² and then do the conversion to cm².

$$OAea = 100 \text{ m} \times 45 \text{ m} = 4.5 \times 10^3 \text{ m}^2$$

$$4.5 \times 10^3 \, \text{m}^2 = 4.5 \times 10^3 \, \text{min} \, 100 \, \text{cm} = 4.5 \times 10^5 \, \text{cm.m}$$

$$4.5 \times 10^{5} \text{ cm.m'} \frac{100 \text{ cm}}{1 \text{ m'}} = 4.5 \times 10^{7} \text{ cm.cm} = 4.5 \times 10^{7} \text{ cm}^{2}$$

- 1.4 Unit Conversions
 - b) Unit Conversions Using Density
- 1.4b Example_1

The density of whole blood at 37°C is 1.06 g.cm⁻³. What is the mass, in grams of a 15.0 cm³ sample of blood?

a) 15.9g /

b) 14.2g

c) Neither a or b

d) Tom I am clueless!

$$1.06 \text{ g.cm}^{-3} = 1.06 \text{ g}$$

$$\frac{15.0 \text{ cm}^3}{1 \text{ cm}^3} = 15.96$$

1.4 Unit Conversions

Unit Conversions using Balanced Chemical Equations

Ammonium Nitrate decomposes explosively according to the following balanced chemical equation:

 $2NH_4NO_3(s) = 2N_2(g) + 4H_2O(g) + O_2(g)$... Balanced chamical equation If 3.4 moles (the chemists unit of quantity) decomposes, how many moles of gaseous water are produced.

$$\frac{3.4 \text{ mol} \cdot \text{NH}_4 \text{NO}_3}{2 \text{ NH}_4 \text{NO}_3} = 6.8 \text{ mol} \text{ H}_2\text{O}$$

2.2 **Elements and the Periodic Table** Nomenclature ... Some Memorization No Readily descernable charges! Li* Na* K+ Ca2+ Se2-Rb+ 1 Te2-Cs+ Ba2+ Monoatomic cotions ... Retoun their parent name. Na : Sodium Nat : Sodium Monoatanic anions ... and in 'ide' 0: Oxygen Slide - 20

- 2.1 The Structure of the Atom
 - a) Components of an Atom

Name	Symbol	Mass (g)	Charge	Mass (amu)*2
PROTON	lo	1.673×10 ⁻²⁴	+1	1.0073
Neytron	្តែព	1.675 × 10-24	O	1.0087
ELECTRON	o e	9.109 x 10 ⁻²⁸	-1	0.0005

- a) Chemists land to ignore the mass of the electron.
- 8) # PROTONS ... atom determinator ... Atomic Number ... (Z
- c) # NEUTRONS ... other mass contributor ... # Protons + # NEUTRONS = MASS NUMBER ... (A)
- d) # ELECTRONS ... determines the overall charge: # ELECTRONS = # PROTONS, NEUTRAL
 # ELECTRONS > # PROTONS, ANION
 # ELECTRONS < # PROTONS, Cottion
 - A

 Z X > Ussigned synlol ... corlon = C

2.1 The Structure of the Atom

 $^{24}Mq^{2+}$

b) Atomic Number, Mass Number, and Atomic Symbols

⁵⁹Co²⁺

2.1b Example_1

47₂₄Cr

Which if any of the following species has the same number of Neutrons as it does Electrons?

¹²⁵₅₀Sn

⁹⁰Sr

35**CI**-

		(A)	(B) (c)	(d) (1)	
	24 Cr	24	# Neutrons 23	24	
	24 Mg 2+	12	Ia	10	
A)	59 Co ^{2†}	27	31	25	
B)	35 Q~	17	18	18	
c)	125 50 Sn	50	75	50	
<u>D</u>)	905r	38	51	38	