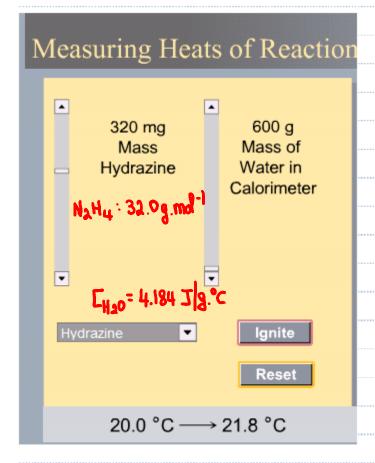
Announ	ncements – Lecture XX I– Monday, June 22 nd	
1. Final Lab:	Tuesday, June 23 th , ISB 155B (Pre-Lab Quiz – TA Evaluation in Class Owls)	
2. Exam III:	Friday, June 26 th , In Class 3 or 4 questions will be taken from Lab Owls 3.4, 4.2, 4.5, 5.5, 5.6	
	 	de - 1

A chunk of silver weighing 19.7 grams and originally at 97.48°C is dropped into an insulated cup containing 76.6 grams of water at 23.38°C. Assuming that all of the heat is transferred to the water, the final temperature of the water is: 24.44 °C

Heat Capacity: $H_2O = 4.184 \text{ J/g}^{\circ}C$ Ag = 0.237 J/g $^{\circ}C$

$$q_{H_{20}} = m \times C \times \Delta T$$
= 76.6 (4.184) ΔT
= 320.49 (T_{p} - 23.38)
= 320.49 T_{p} - 7493.16


$$\sum_{q_{is}} q_{is} = 0$$

$$q_{H_{20}} + q_{H_{3}} = 0$$

$$T_{F} = \frac{7948.28}{325.16} = 24.44^{\circ}C$$

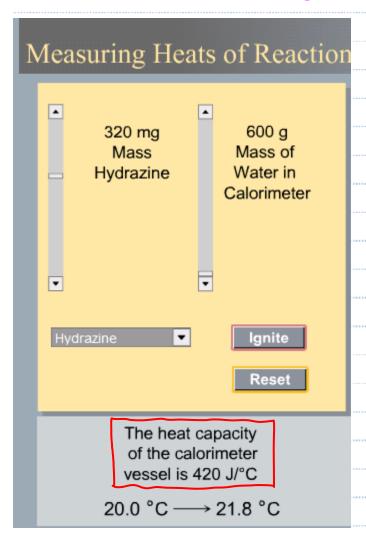
5.4 Enthalpy Changes and Chemical Reactions

C: Determining Enthalpy Change – Calorimetry – 1st Approximation

$$g_{H_{20}} = m \times C \times \Delta T$$

= 600 × 4.184 × 1.8 = 4.52 × 10³ T

$$\Sigma_{q's} = 0: Q_{RXN} + Q_{H_2O} = 0$$


$$Q_{RXN} = -Q_{H_2O}$$

$$= -4.52 \times 10^3 \text{ J}$$

$$g_{RXN} = \frac{-4.52 \times 10^3 \text{ J}}{0.01 \text{ mol}} = \frac{-4.52 \times 10^5 \text{ J. mol}^4}{\text{or}}$$

5.4 **Enthalpy Changes and Chemical Reactions**

C: Determining Enthalpy Change – Calorimetry – Modified

$$Q_{\text{HAD}} = 4.52 \times 10^{3} \text{ J} , ... \text{ see previous slide}$$

$$Q_{\text{ICAL}} = \frac{m \times L \times \Delta T}{L} \text{ Coloriveter Constant}$$

$$= \frac{1}{1600} \text{ Coloriveter Coloriveter Constant}$$

$$= \frac{1}{1600} \text{ Coloriveter C$$

5.4 Enthalpy Changes and Chemical Reactions

C: Determining Enthalpy Change – Calorimetry

A 0.242g sample of napthalene ($C_{10}H_8$) is burned in a bomb calorimeter containing 1025g of water. How much will the temperature rise

Heat capacity of the calorimeter = 802 J/°CHeat of combustion $C_{10}H_8 = -5.15 \times 10^3 \text{ kJ/mol}$ Heat capacity of water = 4.184 J/g.°C

CoH8:
$$10(12.01) + 8(1.01) = 128.18g.md^{-1}$$

$$0.242g + 1 mol = 1.89 \times 10^{-3} mol$$

$$128.18g$$

$$8nxn = -5.15 \times 10^{6} \text{ T.mol}^{-1} (1.89 \times 10^{-3} mol)$$

$$= -9.72 \times 10^{3} \text{ T}$$

$$9nxn + 9nxo + 8mol = 0$$

$$9nxn + 9nxo + 8mol = 0$$

$$9nxo + 9nxo = -9nxo = 9.72 \times 10^{3} \text{ T}$$

$$g_{H_{20}} = m \times E \times \Delta T$$

= 1025 × 4.184 × $\Delta T = 4.29 \times 10^{3} \Delta T$

$$4.29 \times 10^{3} \Delta T + 802 \Delta T = 9.72 \times 10^{3}$$

$$5.09 \times 10^{3} \Delta T = 9.72 \times 10^{3}$$

$$\Delta T = \frac{9.72 \times 10^{3}}{5.09 \times 10^{3}} = 1.91^{\circ}$$

Hess's Law 5.5

A: Hess's Law

Given the standard enthalpy changes for the following two reactions:

(1) 2 Pb(s) + O₂(g)
$$\longrightarrow$$
 2 PbO(s) $\Delta H^{\circ} = -434.6 \text{ kJ}$

(2)
$$Pb(s) + Cl_2(g) \longrightarrow PbCl_2(s)$$
 $\Delta H^{\circ} = -359.4 \text{ kJ}$

what is the standard enthalpy change for the reaction:

(3) 2 PbCl₂(s) + O₂(g)
$$\longrightarrow$$
 2 PbO(s) + 2 Cl₂(g) Δ H° = ?

$$\Delta H^0 = -2(-359.4)$$

$$=$$
 $2PbO(s)$

HESS'S LAW:

Reverse a reaction

Multiply reaction by an integer Odd two or more reactions

... Revense the sign of DHO

... Multiply AHO by the integer. ... add up the AHO's of each.

5.5 Hess's Law

A: Hess's Law

Given the standard enthalpy changes for the following two reactions:

(1) Ni(s) + Cl₂(g)
$$\longrightarrow$$
 NiCl₂(s) Δ H° = -305.3 kJ

(2) Pb(s) + Cl₂(g)
$$\longrightarrow$$
 PbCl₂(s) Δ H° = -359.4 kJ

what is the standard enthalpy change for the reaction:

(3) Ni(s) + PbCl₂(s)
$$\longrightarrow$$
 NiCl₂(s) + Pb(s) Δ H° = ?

1. Us is
$$N_1(s) + Cl_2(g) = N_1Cl_2(s)$$
 $\Delta H^0 = -305.3$
2. Reversed $PPCl_2(s) = PPC(s) + Cl_2(g)$ $\Delta H^0 = 359.4$
 $N_1(s) + PPCl_2(s) = N_1Cl_2(s) + PPC(s)$ $\Delta H^0 = 54.1 \text{ RJ}$

$$\Delta H_{RXN}^{\circ} = \Delta H_{1}^{\circ} - \Delta H_{2}^{\circ}$$