(Pre-Lab Quiz – TA Evaluation in Class Owls)	Announcements – Lecture XXII – Tuesday, June 23 rd		
3 or 4 questions will be taken from Lab Owls:-	1. Final Lab:		wls)
	2. Exam III:	3 or 4 questions will be taken from Lab C)wis:-

Quiz 18 - Last One © Class #: ____ Last Name: ____

Given the standard enthalpy changes for the following two reactions:

(1)
$$N_2(g) + O_2(g) = 2 NO(g)$$

 $\Delta H^{\circ} = 181.8 \text{ kJ}$

(2)
$$N_2(g) + 2 O_2(g) = N_2O_4(g)$$

 $\Delta H^{\circ} = 9.2 \text{ kJ}$

what is the standard enthalpy change for the reaction:

(3)
$$2 \text{ NO(g)} + O_2(g) = N_2O_4(g)$$

$$\Delta H^{\circ} = ?$$

$$\Delta H^{o} = -181.8$$

$$2NO(g)$$
 = $Nx(g)$ + $Ox(g)$
 $Nx(g)$ + $XOx(g)$ = $NxOy(g)$

$$\Delta H^{\circ} = 9.2$$

$$2NO(g) + O_2(g) = N_2O_4(g)$$

5.6 Standard Heats of Reaction

A: Standard Heat of Formation

OHe: The standard notor enthalpy of formation is the enthalpy change for the formation of 1 mole of a compound from its elements in their standard states.

$$N_1(s) + O_2(g) = N_1O_2(s)$$

$$Pb(s) + O(2(q)) = PbO(2(s))$$

$$\Delta H_{\ell}^{\mu} Ch_{\lambda}(g) = 0$$

The OHP for the formation of any element in its standard state is zero

5.6 Standard Heats of Reaction

A: Standard Heat of Formation and Hess's Law

Given the standard enthalpy changes for the following two reactions:

(1) Ni(s) +
$$Cl_2(g) \longrightarrow NiCl_2(s)$$

$$\Delta H^{\circ} = -305.3 \text{ kJ}$$

(2)
$$Pb(s) + Cl_2(g) \longrightarrow PbCl_2(s)$$

$$\Delta H^{\circ} = -359.4 \text{ kJ}$$

what is the standard enthalpy change for the reaction:

(3)
$$Ni(s) + PbCl_2(s) \longrightarrow NiCl_2(s) + Pb(s)$$
 $\Delta H^{\circ} = ?$

$$\Delta H_{\ell}^{\circ} = 0$$
 $\Delta H_{\ell}^{\circ} = 0$

$$\Delta H^{\circ} = -305.3$$

$$\Delta H^{\circ} = 359.4$$

$$\Delta H_{RXN}^{o} = \Delta H_{1}^{o} - \Delta H_{2}^{o}$$

$$\Delta H_{RXN}^{o} = \sum \Delta H_{2}^{o} \frac{Products}{Products} - \sum \Delta H_{2}^{o} \frac{Reactaints}{Reactaints}?$$

$$\Delta H_{RXN}^{o} = \Delta H_{2}^{o} \frac{N_{1}C_{2}(s)}{N_{2}(s)} + \Delta H_{2}^{o} \frac{P_{2}(s)}{P_{3}(s)} - \Delta H_{2}^{o} \frac{N_{1}(s)}{N_{1}(s)} - \Delta H_{2}^{o}$$

$$\Delta H_{RXN}^{o} = \Delta H_{1}^{o} - \Delta H_{2}^{o}$$

5.6 Standard Heats of Reaction

A: Standard Heat of Formation and Hess's Law

Using standard heats of formation, calculate the standard enthalpy change for the following reaction.

$$2CO_2(g) + 5H_2(g) \longrightarrow C_2H_2(g) + 4H_2O(g)$$

Simply book these values up!

10.5	Kinetic Molecular Theory The Postulates
1)	The volume occupied by the gas molecules is negliable in comparison to the volume of the container they are in.
2)	Collisions letuen gas notecules are totally elastic no loss of energy no unternotecular force of attraction
3)	KE is proportional to temperature at a given temperature all gases have the some average kinetic energy (KE), regardless of their Mass.
	PRESSURE = Force per unit area o) Energy of the corresions with the wells of the container
	b) The frequency of these collisions.
	Slide - 208