Ann	ouncements – L	<u>.ecture II – Tuesday, May 21st</u>
)	Class web site :	www.chen.ungss.edu/genchen all lover case
2)	First lab :	Tuesday, May 28 th .
3)	First guiz :	Tonorron, NEDNESDAY, May 22 ND No Make-ups 2 allowed absences.
	5 🔺 🔺	Slide - 1

1.4	Unit Conversions a) Dimensional Analysis	a) 4.5x10 ⁵ X b) 4.5x10 ⁷ ✓ c) 45 d) 0.45 e) Oops I made a mistake
1.4a E	Example_2 A field is 100m long by 45m wic	le. What is the area in cm^2 ? (1m = 100cm)
	To illustrate the power of dime	nsional analysis, first find the area in m ²
	and then do the conversion to d	cm^2 .
	$\begin{aligned} \text{(I}_{\text{Aea}} &= 100 \text{ m} \times 45 \text{ m} \\ 4.5 \times 10^3 \text{ m}^2 &= 4.5 \times 10^3 \text{ s} \end{aligned}$	$= 4.5 \times 10^{3} \text{ m}^{2}$ $\frac{100 \text{ cm}}{1 \text{ m}^{2}} = 4.5 \times 10^{5} \text{ cm}.\text{m}$
	4.5×10 ⁵ cm	$1.\text{pr} = 4.5 \times 10^7 \text{ cm} = 4.5 \times 10^7 \text{ cm}^2$
		▷ 쿄 ⊥ ▲ ▶ Slide - 14

xampie	9_1		
The o What	density of whole bloo t is the mass, in grams	d at 37ºC i s of a <mark>15.0</mark>	s 1.06 g.cm ⁻³ . cm ³ sample of blood?
a) >)	15.9g 🖌 Neither a or b	b) d)	14.2g Tom I am clueless!
	1.06 g.cm	$\frac{.3}{.00} = 1.00$	<mark>5 g</mark> 2m ³
	15.0 cm ³	1.06 g	= 15.9g
		1 <u>y</u>	

Slide - 17

	Symbol	Mass (g)	Charge	Mass (amu)* ²
Proton	ip	1.673×10-24	+1	1.0073
NEYTRON	<u>, 'n</u>	1.675 × 10-14	Ø	1.0087
Elect ron	, e	9.109 x 10-28	-1	0.0005
a) Chemists to	and to ignore the mass	of the electron.		
B) # PROTONS	atom deternivator	Atomic Number	Z)	
c) # Alcuran	NC atten wass can tail	uto # Portors + H N	Ellens - Noss	NUMRED A
d) # ELECTRO	ons determines the over	welchange: #ELECTR	ONS = # PROTONS	NEUTRAL (
		# ELECTR	ons 7 # Protons	ANION
		# Electr	ions < # Protons	Cotion / /
	Α.,		_	
	X 4ssigne	el synkol corkon =	<u>C</u>	

Which if any of the following as it does Electrons? $4^{7}_{24}Cr$ $2^{4}Mg^{2+}$ $5^{9}Co^{2}$ (A) $4^{7}_{24}Cr$ $2^{4}Mg^{2+}$ $5^{9}Co^{2}$ (A) $4^{7}_{24}Cr$ 2^{4} Protons $2^{4}Mg^{2+}$ 12 $2^{4}Mg^{2+}$ 12 (A) $5^{9}Co^{2+}$ 27	ing species has the 2+ (35Cl-) 125 (3) s # Neutrons 23 12 125 5 125 12	ne same number o 50 Sn ⁹⁰ Sr (c) (1) 15 # Electrons 24 10	of Neutro s
as it does Electrons? $47_{24}Cr$ $24Mg^{2+}$ $59Co^{2}$ (A) # Protons $47_{24}Cr$ $24Mg^{2+}$ 24 $47_{24}Cr$ 24 $24Mg^{2+}$ 12 $24Mg^{2+}$ 12 (A) $59Co^{2}$ $24Mg^{2+}$ 12 (A) $59Co^{2}$ $24Mg^{2+}$ 12 (A) $59Co^{2}$ $24Mg^{2+}$ 12 (A) $59Co^{2}$ $24Mg^{2+}$ 12 (A) $59Co^{2}$ $24Mg^{2+}$ 12 (A) $59Co^{2}$ $24Mg^{2+}$ 12 (A) $59Co^{2}$ $24Mg^{2+}$ 12 (A) $59Co^{2}$ $24Mg^{2+}$ 12 (A) $59Co^{2}$ $24Mg^{2+}$ 12 (A) $59Co^{2}$ 27	2+ (35Cl-) 125 (B) s # Neutrons 23 12 125 5 7 7 8 125 5 7 7 125 5 7 7 8 125 5 7 7 7 8 125 5 7 7 7 8 7 7 8 7 8 7 8 7 8 7 8 7 8 7	50 ⁹⁰ Sr (د) (۲) Is # Electrons 24 10	S
$47_{24}Cr = 24Mg^{2+} = 59Co^{2}$ (A) $47_{24}Cr = 47 Protons$ $47_{24}Cr = 24$ $24 Mg^{2+} = 12$ $24 Mg^{2+} = 12$ $A = 59Co^{2}$	2+ (35Cl-) 125 (B) s # Neutrons 23 12 125 5 125 12	son ⁹⁰ Sr (ک) (۱) 18 # Electron: 24 10	S
$\frac{47}{24} Cr = \frac{47}{24} Cr$ $\frac{24}{Mg}^{2+} I2$ $\frac{59}{C0} C^{2+} 27$	s #Neutrons 23 12 32	is #Electron: 24 10	S
24 Mg^{2+} 12 A) 59 Co^{2+} 27 35	12 32	10	
A) $5^{9}C_{0}^{2+}$ 27	32	ሳፍ	
35		ر ع	
B) ⁻ (2 ⁻ 17	18	18	
c) ¹²⁵ 50 50 50	75	50	
D) ⁹⁰ Sr 38	52	38	