Announcements - Lecture II -Tuesday, May 21 ${ }^{\text {st }}$

1) Class neb site: wiN. chen. unass. edu/goncher ... all laver case
2) First labs: Tuesday, May $28^{\text {th }}$.
3) First quiz : Tomorrow, WeDNESDAY, MAy 22 No nake-ups ... 2 allowed absences.
1.4 Unit Conversions
a) $4.5 \times 10^{5} X$
b) $4.5 \times 10^{7} \checkmark$
a) Dimensional Analysis
c) 45
d) 0.45
e) Oops ... I made a mistake
1.4a Example_2

A field is 100 m long by 45 m wide. What is the area in $\mathrm{cm}^{2} ?(1 \mathrm{~m}=100 \mathrm{~cm})$
To illustrate the power of dimensional analysis, first find the area in m^{2} and then do the conversion to cm^{2}.

$$
\begin{aligned}
& \text { URea }=100 \mathrm{~m} \times 45 \mathrm{~m}=4.5 \times 10^{3} \mathrm{~m}^{2} \\
& \begin{array}{l}
4.5 \times 10^{3} \mathrm{~m}^{2}=\begin{array}{l}
4.5 \times 10^{3} \mathrm{~mm} \\
\hline
\end{array} \frac{100 \mathrm{~cm}}{1 \mathrm{~m}}=4.5 \times 10^{5} \mathrm{~cm} . \mathrm{m} \\
\\
\begin{array}{l}
4.5 \times 10^{5} \mathrm{~cm} . \mathrm{m}^{\prime} \\
\\
\hline \mathrm{m}^{\prime}
\end{array} 100 \mathrm{~cm} \\
\hline
\end{array}
\end{aligned}
$$

1.4b Example_1

The density of whole blood at $37^{\circ} \mathrm{C}$ is $1.06 \mathrm{~g} . \mathrm{cm}^{-3}$. What is the mass, in grams of a $15.0 \mathrm{~cm}^{3}$ sample of blood?

a)	$15.9 \mathrm{~g} ~$	b)	14.2 g
c)	Neither a or b	d)	Tom l am clueless!

$$
\begin{aligned}
& 1.06 \mathrm{~g} \cdot \mathrm{~cm}^{-3}=\frac{1.06 \mathrm{~g}}{1 \mathrm{~cm}^{3}} \\
& \begin{array}{l|l}
15.0 \mathrm{~cm}^{3} & 1.06 \mathrm{~g} \\
\hline 1 \mathrm{~cm}^{3}
\end{array}=15.9 \mathrm{~g}
\end{aligned}
$$

```
Unit Conversions
Unit Conversions using Balanced Chemical Equations
```

Ammonium Nitrate decomposes explosively according to the following balanced chemical equation:

If 3.4 moles (the chemists unit of quantity) decomposes, how many moles of gaseous water are produced.

$3.4 \mathrm{mod}^{2}, \mathrm{NH}_{4} \mathrm{NO}_{3}^{\prime}$	4	$\mathrm{H}_{2} \mathrm{O}$		
	2	$\xrightarrow{\mathrm{NH}_{4} \mathrm{NO}_{3}^{\prime}}$	$=$	
:---	:---	:---	$\mathrm{mol}^{2} \mathrm{H} \mathrm{O}$	

2.2 Elements and the Periodic Table Nomenclature ... Some Memorization

Monoatomic cations ... retain their parent name
Na : Sodium
Na^{+}: Sodium
Monoatanic anions ... end in 'ide'
0 : Oxygen
0^{2-} : ride
2.1 The Structure of the Atom
a) Components of an Atom

$$
\text { *2: } 10 \mathrm{Hu}=1.66054 \times 10^{-24} \mathrm{~g}
$$

a) Chenists tend to ignore the mass of the dectron.
8) \# Protons ... atom deterninator ... Atonic NuMBER .. (Z)
c) \# Neutrons ... other mass contributor ... \#Protons + \# NEUTRONS = MaSS NuMBER ... A)
d) \# ElECTRONs ... determines the overall charge:
\#Electrons = \# Protons, Neutral \# Electrons > \# Protons, Anion \# Electrons < \# Protons, Cation

$$
{ }_{z}^{A} X \longrightarrow \text { Assigned syullod ... carbon }=C
$$

2.1 The Structure of the Atom
b) Atomic Number, Mass Number, and Atomic Symbols
2.1b Example_1

Which if any of the following species has the same number of Neutrons as it does Electrons?

${ }_{47}{ }_{24} \mathrm{Cr}$	${ }^{24} \mathrm{Mg}^{2+}$	${ }^{59} \mathrm{Co}^{2+}$	${ }^{35} \mathrm{Cl}$	${ }^{125}{ }_{50} \mathrm{Sn}$	${ }^{5} \mathrm{Sr}$

	${ }_{24}^{47} \mathrm{Cr}^{2}$	\# Protons ${ }^{24} \mathrm{Mg}^{2+}$	\# Neutrons 23	\# Electrons 24
A)	${ }^{59} \mathrm{Co}^{2+}$	27	12	10
B)	${ }^{35} \mathrm{QP}^{-}$	17	32	25
C)	${ }_{50}^{125} 5 \mathrm{Sn}$	50	18	18
D)	${ }^{90} \mathrm{Sr}_{r}$	38	75	50

