Ar	nouncen	ne	nt	<u>s –</u>	Le	ect	tur	e l	V –	Fr	id	ay	, N	ay	<u>24</u> ^t	h				
a)	Odd/DROP	:		Ta	doy			Me	N 2	4 th										
 L	No Class	•		Mo	ndo	٧,		Mf	. Y	27 ^E	h						 	 		
c)	First Lab	:		Tu	esd	ay,		M	RY	28 ^t	:h						 	 		
 d)	Exam 1	•		Fr	ida	٧,		Ma	7	31 ⁵	1						 	 		
		5						\supset	P		<u></u>	4	•				 	Slic	le -	39

Quiz 3	Las	t Name:	
	Name:		
	a) Na ₂ S	Sodium sulfide	
	b) Mg(NO ₃) ₂	Magnesium nitrate	
	c) Cu ₃ (PO ₄) ₂	Copper(11) phosphate	
	d) NH ₄ Br	annonium bromide	
	Formula:		
	e) Calcium hydroxide	Ca (OH)3	
	f) Aluminum oxide	<u> </u>	
	g) Chromium(II) sulfide	<u></u>	
	h) Potassium sulfite	K ₂ 50₃	
	₿ ♦ ♦ ♦		Slide - 40

- 3.1 The Mole and Molar Mass
 - b) Molar Mass

 $N = 6.023 \times 10^{23}$

- 3.1b Molar Mass Example_1a
 - a) How many ATOMS of boron are present in 3.30 moles of boron trifluoride? BF₃
 - b) How many MOLES of fluorine are present in 3.09x10²² molecules of boron trifluoride

$$3.30 \text{ mol } BF_3 \mid 1 \mid B = 3.30 \text{ mol } B$$

3.1	The	Mole	and	Molar	Mass
	h)	Molar	Mae	9	

 $N = 6.023 \times 10^{23}$

3.1b Molar Mass – Example_1b

- a) How many ATOMS of boron are present in 3.30 moles of boron trifluoride?
- b) How many MOLES of fluorine are present in 3.09x10²² molecules of boron trifluoride

$$\frac{3.09 \times 10^{22} \text{ molecules} \cdot BF_3}{6.023 \times 10^{23} \text{ molecules}} = 0.0513 \text{ mol} BF_3$$

3.1	The	Mole	and	Mola	r Mass
	b)	Malas	Mac		

3.1b Molar Mass – Example_2

How many Grams of bromine are present in 1.02 moles of <u>carbon</u> tetrabromide? CBr4

- The Mole and Molar Mass 3.1
 - b) Molar Mass
- 3.1b Molar Mass Example_3

How many MOLES of water are present in 5.41 grams of this compound?

- a) 0.1
- b) 0.2 c) 0.3 d) 0.4 e) Help

Molar Mass
$$H_2O: 2(H) + O$$

$$2(1.01) + 16.00 = 18.02 g md^{-1}$$
Molar Mass

18.029

3.2 Stoichiometry and Compound Formulas

b) Percent Composition

Express the formula C_4H_{10} (butane) in terms of % weight of each component

$$C_4H_{10}$$
: $4(c) + 10(H)$
 $4(12.01) + 10(1.01)$
 $48.04 + 10.10 = 58.14 \text{ g.mg}^{-1}$

1 mol of C4410 weighs 58.14g
of which 48.04g is C and 10.10g is H.

$$C: \left(\frac{48.049}{58.149}\right)|00 = 82.63\% \text{ by Neight}$$

% Composition by Neight

$$H: \left(\frac{10.10g}{58.14g}\right)_{100} = 17.37\%$$
 by weight

3.2 Stoichiometry and Compound Formulas

c) Empirical Formulas from Percent Composition

Butane is 82.63% C and 17.37% H by weight. Can we determine the formula of Butane from this (can we go back!)

a) Ossume	a 100g	sample	82.63q	17.379
	Ø		0	0

3.2	Stoichiometry and Compound Formulas c) Empirical Formula	
	C2Hs) C4H10 C6H15 C8H20 C10H25 etc OW of these are 82.63% c and 17.37% H by weight.	
	? What is the simplist difference between each of them	
	% Composition -> Yornula gives the smallest whole number ratio called the Емрікісяц Formula	
	Need one More piece of unformation to determine the actual formula.	
	(5 6 6 6 5 급 ↓ ▼ Slide - 47	,

3.2 Stoichiometry and Compound Formulas

d) Determining Molecular Formulas

C: 12.01 H: 1.01 O: 16.01

Slide - 48

3.2d Molecular_Formula – Example_1

An insect repellant, is found to be 62.58% C, 9.63% H and 27.79% O. Using Mass Spectrometry its molar mass is determined to be 230.30 g.mol⁻¹. What is the molecular formula of this insect repellant.

	C	Н	0	C6H11O2:
<u>a)</u>	62.58	9.63	27.79	6(12.01)+11(1.01)+2(16.00)
				= 115.15 g.md ⁻¹
})	61.58/12.01	9.63/1.01	27.79/16.00	
	5.21 mg	9.53 mol	1.74 mol	230 .30 _ 2
				115.15
c)	<u>5.21</u>	9.53	1.74	
	1.74	1.74	1.74	
				2011 30 Hornula: CoH1102
	2.99	5.48	1.00	
				Molecular Formula: C12H22O4
d) va	5.98	10.96	2.00	- At 7
	6	H	2	
		6H1102		