Announcements – Lecture VI – Tuesday, May 28 th						
1 ^{SI} LAB: Today 1:30-4:30, ISB 15	55 (A-C)					
2 NO LAB: THURSDAY, MAY 30th, 1:30-4:						
EXAM 1: FRIDAY, MAY 31 ST , IN class						
	Slide - 49					

		:_	A
U	u	ΙZ	4

Last Name: _____

C: 12.01

H: 1.01

O: 16.00

A compound is found to contain 39.99 % carbon, 6.727 % hydrogen, and 53.28 % oxygen by weight.

Determine the empirical formula of

Determine the empirical formula of this compound?

The molecular mass for this compound is 180.18 g/mol..

Determine the molecular formula of this compound?

$$CH_{2}O: 12.01+2(1.01)+16.00$$

= 30.03g.md

$$\frac{180.18 \, \text{g.mol}^{-1}}{30.03 \, \text{g.mol}^{-1}} = 6$$

b) Balancing Chemical Equations

Balance the following chemical equation:

$$\frac{2}{3}$$
 Fe₂O₃(s) + $\frac{3}{3}$ C(s)

$$\frac{2}{2}$$
 Fe(s) + $\frac{3}{2}$ CO₂(g)

Rec	acto	ınts		*************	/
Fe	2	2	4	4	4
0	3	3	6	6	6
С	1	1	I	l	3

$$2 F_{2}O_{3}(s) + 3C(s) = 4 F_{2}(s) + 3 CO_{2}(g)$$

3.3 Stoichiometry and Chemical Reactions

b) Balancing Chemical Equations

3.3b Balancing - Example_2

Balance the following chemical equation:

$$C_2H_6(g) + \frac{1}{2}O_2(g)$$

$$\frac{2}{2}$$
CO₂(g) + $\frac{3}{2}$ H₂O(l)

Red	acta	nts		1	
С		2	2	2	
Н	6	6	6	6	
0	2	2	1	7	

Pro	ducts	3		/	
С	1	2	2	2	
Н	2	2	6	6	
0	3	5	7	7	

决

$$G_{1}H_{6}(g) + \frac{7}{2}O_{2}(g) = 2CO_{2}(g) + 3H_{2}O(g)$$

"Convert to the snallest whole unteger values"

3.3	Stoichiometry and Chemical Reacti b) Balancing Chemical Equations	ions		
	3.3b Balancing – Example_3			
	Balance the following chemical equatio	n:		
	AgNO3(aq)+K2CrO4(aq)	=	Ag2CrO4(s)+_	_KNO3(aq)
	Nhat is taking you so long?			
		<u>1</u> • •		Slide - 53

3.3 Stoichiometry and	Chemical	Reactions
-----------------------	-----------------	------------------

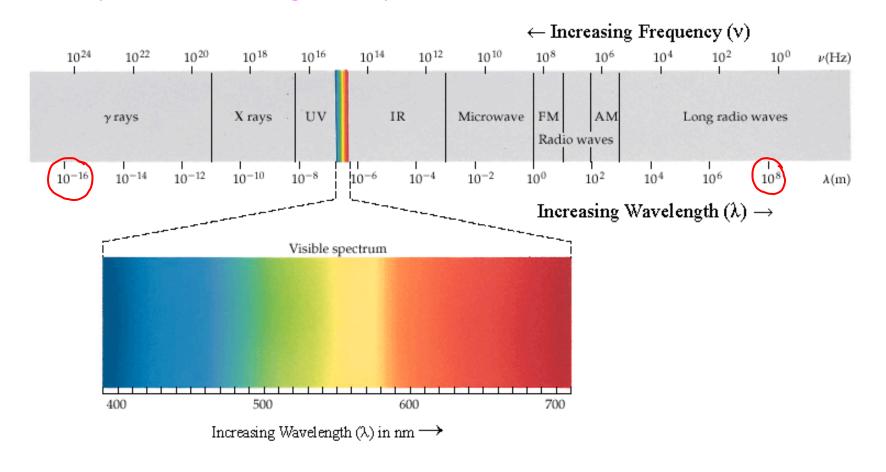
b) Balancing Chemical Equations

3.3b Balancing - Example_3

Balance the following chemical equation:

$$\frac{1}{2}$$
AgNO₃(aq) + $\frac{1}{2}$ K₂CrO₄(aq)

$$= Ag_2CrO_4(s) + \frac{1}{2}KNO_3(aq)$$


Reacto	ants	s	/	
Ag	1	2	a	
NO ₃	1	a	J	
K	2	2	a	
CrO ₄	1		I	

$$2 Ag NO_3(qq) + K_3 C_7O_4(qq) = Ag_3 C_7O_4(s) + 2 KNO_3(qq)$$

Electromagnetic Radiation 6.1 a) Wavelength and Frequency Vibrating Charges and Electromagnetic Waves Spring Tension SYMBOL Navelong the Jrequency s-1 or Hz (Hertz)

6.1 Electromagnetic Radiation

b) The Electromagnetic Spectrum

Let us focus on the visible region particulary the extremes ... Blue is Red