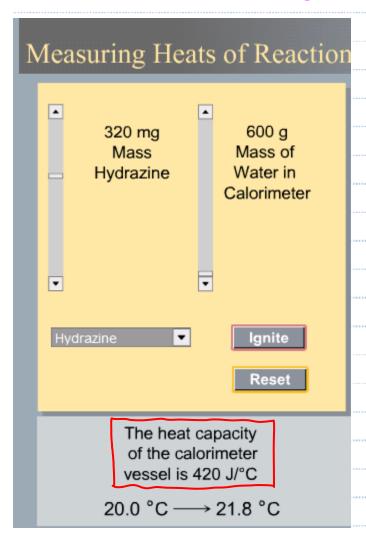

l. Final Lab:	Tuesday, June 25 th , ISB 155 (A-C) (Pre-Lab Quiz – TA Evaluation in Class Owls)
2. Exam III:	Friday, June 27 th , In Class 3 or 4 questions will be taken from Lab Owls:- 3.4, 4.2, 4.5, 5.5, 5.6

5.4 Enthalpy Changes and Chemical Reactions

C: Determining Enthalpy Change – Calorimetry – 1st Approximation



$$g_{H_{20}} = m \times C \times \Delta T$$

= 600 × 4.184 × 1.8 = 4.52 × 10³ T

$$g_{RXN} = \frac{-4.52 \times 10^3 \text{ J}}{0.01 \text{ mol}} = \frac{-4.52 \times 10^5 \text{ J. mol}^{-1}}{\text{or}}$$

5.4 **Enthalpy Changes and Chemical Reactions**

C: Determining Enthalpy Change – Calorimetry – Modified

$$q_{\text{HaD}} = 4.52 \times 10^{3} \text{ J} \dots \text{ see previous slide}$$

$$q_{\text{Ical}} = \frac{m \times L \times \Delta T}{L} \text{ Caloriveter Constant}$$

$$= \frac{1}{1600} \text{ Caloriveter Constant}$$

$$= \frac{1$$

A chunk of silver weighing 19.7 grams and originally at 97.48°C is dropped into an insulated cup containing 76.6 grams of water at 23.38°C. Assuming that all of the heat is transferred to the water, the final temperature of the water is: 24.44 °C

Heat Capacity: $H_2O = 4.184 \text{ J/g}^{\circ}C$ Ag = 0.237 J/g $^{\circ}C$

$$\sum_{q_{is}} q_{is} = 0$$

$$q_{H_{20}} + q_{H_{3}} = 0$$

$$T_{F} = \frac{7948.28}{325.16} = 24.44^{\circ}C$$

5.4 Enthalpy Changes and Chemical Reactions

C: Determining Enthalpy Change – Calorimetry

A 0.242g sample of napthalene ($C_{10}H_8$) is burned in a bomb calorimeter containing 1025g of water. How much will the temperature rise

Heat capacity of the calorimeter = 802 J/°CHeat of combustion $C_{10}H_8 = -5.15 \times 10^3 \text{ kJ/mol}$ Heat capacity of water = 4.184 J/g.°C

CoH8:
$$10(12.01) + 8(1.01) = 128.18g.md^{-1}$$

$$0.242g + 1 mol = 1.89 \times 10^{-3} mol$$

$$128.18g$$

$$S_{RXN} = -5.15 \times 10^{6} \text{ T. mol}^{-1} (1.89 \times 10^{-3} \text{ mol})$$

$$= -9.72 \times 10^{3} \text{ T}$$

$$S_{RXN} + S_{Hx0} + S_{COl} = 0$$

$$S_{Hx0} + S_{COl} = -S_{RXN} = 9.72 \times 10^{3} \text{ T}$$

$$Q_{H_{20}} = m \times E \times \Delta T$$

$$= 1025 \times 4.184 \times \Delta T = 4.29 \times 10^{3} \Delta T$$

$$Q_{CO} = 802 \Delta T$$

$$Q_{H_{20}} + Q_{CO} = 9.72 \times 10^{3}$$

$$4.29 \times 10^{3} \Delta T + 802 \Delta T = 9.72 \times 10^{3}$$

$$5.09 \times 10^{3} \Delta T = 9.72 \times 10^{3}$$

$$\Delta T = 9.72 \times 10^{3} = 1.91^{\circ}$$

Hess's Law 5.5

A: Hess's Law

Given the standard enthalpy changes for the following two reactions:

(1) 2 Pb(s) + O₂(g)
$$\longrightarrow$$
 2 PbO(s) $\Delta H^{\circ} = -434.6 \text{ kJ}$

(2) Pb(s) + Cl₂(g)
$$\longrightarrow$$
 PbCl₂(s) $\Delta H^{\circ} = -359.4 \text{ kJ}$

what is the standard enthalpy change for the reaction:

(3) 2 PbCl₂(s) + O₂(g)
$$\longrightarrow$$
 2 PbO(s) + 2 Cl₂(g) Δ H° = ?

$$\Delta H^0 = -2(-359.4)$$

$$=$$
 $2PbO(s)$

HESS'S LAW:

Reverse a reaction

... Revense the sign of DHO

Multiply reaction by an integer Odd two or more reactions

... Multiply AHO by the integer. ... add up the AHO's of each.

5.5 Hess's Law

A: Hess's Law

Given the standard enthalpy changes for the following two reactions:

(1) Ni(s) + Cl₂(g)
$$\longrightarrow$$
 NiCl₂(s) Δ H° = -305.3 kJ

(2)
$$Pb(s) + Cl_2(g) \longrightarrow PbCl_2(s)$$
 $\Delta H^{\circ} = -359.4 \text{ kJ}$

what is the standard enthalpy change for the reaction:

(3) Ni(s) + PbCl₂(s)
$$\longrightarrow$$
 NiCl₂(s) + Pb(s) Δ H° = ?

1. (Is is
$$N_1(s) + Cl_2(g) = N_1Cl_2(s)$$
 $\Delta H^0 = -305.3$
2. Reversed $PbCl_2(s) = Pb(s) + Cl_2(g)$ $\Delta H^0 = 359.4$
 $N_1(s) + PbCl_2(s) = N_1Cl_2(s) + Pb(s)$ $\Delta H^0 = 54.1 \text{ RJ}$

5.6 Standard Heats of Reaction

A: Standard Heat of Formation

OHe: The standard notor enthalpy of formation is the enthalpy change for the formation of 1 mole of a compound from its elements in their standard states.

$$N_1(s) + O_2(g) = N_1O_2(s)$$

$$Pb(s) + O(2(q)) = PbO(2(s))$$

$$\Delta H_{f}^{p} Ch_{2}(g) = O$$

The OHP for the formation of any element in its standard state is zero

5.6 Standard Heats of Reaction

A: Standard Heat of Formation and Hess's Law

Given the standard enthalpy changes for the following two reactions:

(1) Ni(s) +
$$Cl_2(g) \longrightarrow NiCl_2(s)$$

$$\Delta H^{\circ} = -305.3 \text{ kJ}$$

(2)
$$Pb(s) + Cl_2(g) \longrightarrow PbCl_2(s)$$

$$\Delta H^{\circ} = -359.4 \text{ kJ}$$

what is the standard enthalpy change for the reaction:

(3) Ni(s) + PbCl₂(s)
$$\longrightarrow$$
 NiCl₂(s) + Pb(s) $\triangle H^{\circ} = ?$

$$\triangle H^{\circ}_{\epsilon} = 0$$

$$\Delta H^{\circ} = -305.3$$

$$\Delta H_{RXN}^{2} = \Delta H_{1}^{2} - \Delta H_{2}^{2}$$

$$\Delta H_{RXN}^{2} = \sum \Delta H_{2}^{2} \frac{Products}{Products} - \sum \Delta H_{2}^{2} \frac{Products}{Products} ?$$

$$\Delta H_{RXN}^{2} = \Delta H_{2}^{2} \frac{Products}{Products} - \sum \Delta H_{2}^{2} \frac{Products}{Products} ?$$

$$\Delta H_{RXN}^{2} = \Delta H_{1}^{2} + \Delta H_{2}^{2} \frac{Products}{Products} - \sum \Delta H_{2}^{2} \frac{Products}{Products} -$$

5.6 Standard Heats of Reaction

A: Standard Heat of Formation and Hess's Law

Using standard heats of formation, calculate the standard enthalpy change for the following reaction.

$$2CO_2(g) + 5H_2(g) \longrightarrow C_2H_2(g) + 4H_2O(g)$$

Simply book these values up!