Announcements-Lecture XXIII-Wednesday, June 25 th

1. Exam III:

Friday, June $27^{\text {th }}$, In Class
3 or 4 questions will be taken from Lab Owls:-
$3.4,4.2,4.5,5.5,5.6$

Stoichiometry - The Essentials

$$
\begin{array}{ll}
\text { Solids and pure liquids: } & \# \text { mol }
\end{array}=\frac{\text { Mass in grams }}{\text { Molar Mass }}
$$

LO_3.4 Solution Concentration
In the laboratory you dissolve 16.0 g of calcium nitrate in a volumetric flask and add water to a total volume of 500 mL .

What is the concentration of the calcium cation?
What is the concentration of the nitrate anion?

$$
\begin{aligned}
& \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}: 40.08+2(14.01)+6(16.00)=164.1 \mathrm{g.md}^{-1} \\
& 16.0 \mathrm{~g} \\
& 500 \mathrm{~mL} \\
& M=\frac{\# \mathrm{~mol} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \quad 1 \quad 16.0 \mathrm{~g}^{\prime} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \left\lvert\, \frac{1 \mathrm{~mol}}{V(L)}=0.0975 \mathrm{md}\right.}{164.1 \mathrm{~g}^{\prime}} \\
& =\frac{0.0975}{0.5}=0.195 \mathrm{M} \\
& {\left[\mathrm{M}\left(\mathrm{NO}_{3}\right)_{2}=\mathrm{Ca}^{2 t}+2 \mathrm{NO}_{3}^{-}\right.} \\
& 0.195 \mathrm{M} \quad 0.195 \mathrm{M} \quad 0.390 \mathrm{M}
\end{aligned}
$$

LO_4.2 Limiting Reagent
Hydrochloric acid (aq) + iron(III) oxide (s) = water (I) + iron(III) chloride (aq)
When 0.522 moles of hydrochloric acid are mixed with 0.188 moles of iron(III) oxide
Determine the formula for the limiting reagent and what is the maximum amount of water in moles that can be produced:

$$
\begin{aligned}
& 6 \mathrm{HQ}(\mathrm{aq})+\mathrm{Fe}_{2} \mathrm{O}_{3}(s)=3 \mathrm{H}_{2} \mathrm{O}(q)+2 \mathrm{FeCl}_{3}(\mathrm{aq}) \\
& 0.5220 .188 \\
& 0.522 \mathrm{md} \mathrm{HQQ}) \frac{3 \mathrm{H}_{2} \mathrm{O}}{6 \mathrm{HC}}=0.261 \mathrm{~mol}_{\mathrm{H}} \mathrm{O} \mathrm{O} \quad * \\
& \frac{0.188 \mathrm{md} \mathrm{~F} \mathrm{Fe}_{2} \mathrm{O}_{3} \mid 3 \mathrm{H}_{2} \mathrm{O}}{1}=0.564 \mathrm{~mol}_{\mathrm{F}_{2} \mathrm{O}} \mathrm{H} \mathrm{O} \\
& \text { limiting Reagent: } H Q \\
& 0.261 \mathrm{~mol}_{\mathrm{H}_{2} \mathrm{O}}=\text { Maximum amount }
\end{aligned}
$$

LO_4.5 Percent Yield
For the following reaction, 5.1 g of sulfuric acid are mixed with excess calcium hydroxide. The reaction yields 4.4 g of calcium sulfate

Sulfuric acid (aq) + calcium hydroxide (s) = calcium sulfate (s) + water (I)

1. What is the theoretical yield of calcium sulfate:

2. What is the percent yield of calcium sulfate:

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})=\mathrm{CaSO}_{4}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{P})
$$

$\mathrm{H}_{2} \mathrm{SO}_{4}: 2(1.01)+32.07+4(16.00)=98.09 \mathrm{~g}_{\mathrm{md}^{-1}}$

$$
\begin{array}{c|c}
0.052 \mathrm{~mol}^{2} \mathrm{CaS}_{4} & 136.15 \mathrm{~g} \\
\hline \mathrm{mop}
\end{array}=7.1 \mathrm{~g} \mathrm{CaSO}_{4}
$$

$$
\begin{aligned}
& \begin{array}{c|c}
5.1 \mathrm{~g} \mathrm{H} & \mathrm{SO}_{4} \\
\hline 98.09 \mathrm{gol}
\end{array}=0.052 \mathrm{md} \mathrm{H}_{2} \mathrm{SO}_{4} \\
& \begin{array}{c|c}
0.052 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4} & 1 \mathrm{C}_{4} \mathrm{SO}_{4} \\
\hline & 1 \mathrm{H}_{2} \mathrm{SO}_{4}
\end{array}=0.052 \mathrm{~mol}^{2} \mathrm{CaSO}_{4} \\
& \mathrm{CaSO}_{4}: 40.08+32.07+4(16.00)=136.15 \mathrm{~g} \cdot \mathrm{~mol}^{-1}
\end{aligned}
$$

$$
\left(\frac{4.4}{7.1}\right) 100=62 \%
$$

LO_5.5 Titrations
How many grams of solid calcium hydroxide are needed to exactly neutralize 20.4 mL of a 0.89 M hydrobromic acid solution?
Assume the volume remains constant.
0.67 g

$$
\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{HBr}(\mathrm{aq})=\mathrm{CaBr}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{Ol}(\mathrm{q})
$$

$$
\begin{aligned}
& \mathrm{Ca}(\mathrm{OH})_{2}: \quad 40.08+2(16.00+1.01)=74.1 \mathrm{~g} \cdot \mathrm{md}^{-1} \\
& \left.0.0091 \mathrm{~mol} \mathrm{Ca}_{\mathrm{a}}(\mathrm{OH})_{2}\right) \frac{74.1 \mathrm{~g}}{1 \mathrm{~mol}}=0.67 \mathrm{~g}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ?g } \quad 20.4 \mathrm{~mL} \\
& 0.89 \mathrm{M} \\
& \# \text { mod } \mathrm{HBr}=0.89 \times 0.0204=0.018 \\
& 0.018 \mathrm{~mol} \mathrm{HBr} \left\lvert\, \begin{array}{l}
1 \mathrm{Ca}(\mathrm{OH})_{2} \\
\hline
\end{array}=0.0091 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}\right.
\end{aligned}
$$

LO_5.6 Titrations
34.4 mL of 1.74 M nitric acid is added to 44.1 mL of sodium hydroxide, the resulting solution is acidic. 23.8 mL of 0.630 M calcium hydroxide is required to reach neutrality. What is the molarity of the original sodium hydroxide solution?.

