

	Reaction	n Mechanisms – Rate Law – Catalyst Inte	ermediate
		$NO_{2}(g) + CO(g) = NO(g) + CO_{2}(g)$	
There	are two pr	oposed mechanisms for this reaction	
Mecha	anism 1		
	Step 1:	$NO_2(g) + CO(g) = NO(g) + CO_2(g)$	Slow step
Mecha	anism 2 🗸 🖉		
	Step 1:	$2 NO_2(g) = NO_3(g) + NO(g)$	Slow step
	Step 2:	$NO_{3}(g) + CO(g) = NO_{2}(g) + CO_{2}(g)$	Fast step
a) •+++++ c)) Which me) Intermed) Catalyst	echanism best supports the experimentall iate – a) CO(g) b) NO ₃ (g) c) NO(g) d) C – a) CO(g) b) NO ₃ (g) c) NO(g) d) C	y determined rate law? CO ₂ (g) <mark>e)</mark> None CO ₂ (g) <mark>e)</mark> None ✓
o) Mech	ianism 2:	The sun of the steps = the balance chemical equation . Nould give an , I.R. = R[NO2] ² , which matches the e	Step 1 Boing the slow step Experimentally determine one
B) Inte	ERMEDIATE :	Does not appear in bolonced chemical equation. Oppear nechanish and subsequent gets used up as a Reactan	as as a Product in one step in H t in a subsequent step.
c) Far	ANET :	Tree not assess in Dological chamical countries and	mas as a Ametant in me ster.

2 H ₂ (g) + 2 NO($(g) = N_2(g) + 2H_2O(g)$	
lechanism:		
Step 1: $2 \operatorname{NO}(g) \Leftrightarrow \operatorname{N}_2\operatorname{O}_2(g)$	Fast in both directions	
Step 2: $N_2O_2(g) + H_2(g) = N_2C_2(g)$	$D(g) + H_2O(g)$ Slow step	
Step 3: $N_2O(g) + H_2(g) = N_2(g)$	$H_2O(g)$ Fast step	
	Yes No	
vhat is the rate law for this reaction? Is	s there an intermediate? Is there a catalyst?	
	Rateo : ko [NO] ²	
Slow step STEP 2.	Plater : KR [N202]	
Jmilia Male = R2 [N202][H2]	$[\mathcal{O} \times q, R_R \lfloor N_2 O_2 \rfloor = R_R \lfloor N O \rfloor^2$	
STEP 1: Formation of N202, a fast equilibrium	Imitial Rate : k2 (kg/AR)[NO] ² [H2]	
Rates : Rate of Lorward Reaction	Amitial Rate = R[NO]2[H2]	
Rater : Rate of Revense Reaction.		
	$ = k_2(k_g/k_R) $	
@ Lquillibrium, Rater : Rater	these are all constants.	
@ Lquillibrium, Rater : Rater	these are off constant	