

15.2	The Equilibrium Constant, K Writing Equilibrium Constant Expressions		
	αA + & B <=> cC + dD		
	$K = \frac{[C]^{\circ} [D]^{\circ}}{[A]^{\circ} [B]^{\circ}}$		
	However: a) Pure solids do not appear in the expression.		
	&) Pune Siguids and solvents do not appear in the expression.		
	a) $\frac{[H_2][0]}{[H_20]} + H_2(g) + CO(g)$ $K = \frac{[H_2][0]}{[H_20]}$		
	$\&) CH_3CO_2H_{10}(3) + \frac{H_2O(3)}{H_2O(3)} \Leftrightarrow CH_3CO_2^+ + H_3O^+ \qquad K = \frac{[CH_3CO_2^+](H_3O^+]}{[CH_3CO_2H]}$		

2 NOBr (g) <=> 2 NO(g) + Br2(g)		
Kc - [NO] ² [1	$\frac{Br_2}{Dr_1^2}; K_p = \frac{P_{NO} P_{Br_2}}{P_{NO}^2}$	
How are Kc and Kp related?		
PV = nAT	$K_{p} = K_{c} (RT)^{3} (RT)^{-2}$	
P = (n/v) RT	= Kc (RT) ³⁻²	
mo?, ₰-' = []	RT	
	3-2 = mor gos products - mor gos reactom	
PNO PBra	χ (v) (g) ξ (5) (x (g)) χ (10 OF $3 - 2$	
$K_P = \frac{P^2 NOBr}{P^2 NOBr}$		
$= \frac{[N0]^{(RT)^{2}}[Br_{2}](RT)}{[N0]^{2}[RT)}$		
$[NO]^{2}[Br_{3}]$ (RT) ³		
= [NOBr] ² (RT)	2	
	$K_{P} = K_{c}(RT)^{a''}$	

