16.3 Acid and Base Strength Acid and Base Strength

16.3 Acid and Base Strength

Acid and Base Hydrolysis Equilibria, Ka, and Kb

WEAK Acios:

$$HA(aq) + H_2O(p) \iff H_3O^+ + A^-$$

$$\mathsf{K}_0 = \frac{[\mathsf{H}_3\mathsf{O}^*][\mathsf{A}^*]}{[\mathsf{H}\mathsf{A}]}$$

WEAK BASES:

$$B(aq) + H_2O(9) \iff BH^+ + OH^-$$

16.3 Acid and Base Strength Acid and Base Hydrolysis Equilibria, Ka, and Kb

 K _a Values			K _a Values		
 Name of Acid	Acid	Ka	Name of Acid	Acid	Ka
Sulfuric acid Hydrochloric acid Nitric acid Hydronium ion Hydrogen sulfate ion Phosphoric acid	H ₂ SO ₄ HC1 HNO ₃ H ₃ O ⁺ HSO ₄ ⁻ H ₃ PO ₄	large large large 1.0 1.2 × 10 ⁻² 7.5 × 10 ⁻³	Hexaaquaaluminum ion Carbonic acid Hydrogen sulfide Dihydrogen phosphate ion Hypochlorous acid Ammonium ion	A1(H ₂ O) ₆ 3+ H ₂ CO ₃ H ₂ S H ₂ PO ₄ - HC1O NH ₄ +	7.9 × 10 ⁻⁶ 4.2 × 10 ⁻⁷ 1 × 10 ⁻⁷ 6.2 × 10 ⁻⁸ 3.5 × 10 ⁻⁸ 5.6 × 10 ⁻¹⁰
Hexaaquairon(III) ion Hydrofluoric acid Formic acid Benzoic acid Acetic acid	Fe(H ₂ O) ₆ 3+ HF HCO ₂ H C ₆ H ₅ CO ₂ H CH ₃ CO ₂ H	6.3 × 10 ⁻³ 7.4 × 10 ⁻⁴ 1.8 × 10 ⁻⁴ 6.3 × 10 ⁻⁵ 1.8 × 10 ⁻⁵	Hydrocyanic acid Hexaaquairon(II) ion Hydrogen carbonate ion Hydrogen phosphate ion Water Hydrogen sulfide ion	HCN Fe(H ₂ O) ₆ ²⁺ HCO ₃ ⁻ HPO ₄ ²⁻ H ₂ O HS ⁻	4.0×10^{-10} 3.2×10^{-10} 4.8×10^{-11} 3.6×10^{-13} 1.0×10^{-14} 1×10^{-19}

The Parger the Ko, the stronger the acid

16.3 Acid and Base Strength

Relationship Between Ka and Kb - Conjugate Acid-Base Pair

* On amion acting as a base?
We will address this in more detail shortly.

16.4 Estimating the pH of Acid and Base Solutions Strong Acid and Strong Base Solutions

What is the pH of an aqueous solution of 1.15x10⁻² M hydrobromic acid?

$$HB_{r}$$
 $+ H_{2}O(I) = H_{3}O^{+}$ $+ B_{r}^{-}$
 $I = 1.15 \times 10^{-2}$ $O = 0$
 $C = 1.15 \times 10^{-2}$ $I.15 \times 10^{-2}$ $I.15 \times 10^{-2}$
 $E = 0$ $I.15 \times 10^{-2}$ $I.15 \times 10^{-2}$

HBr : Strong acid ... 100%

I: Imitial concentrations

E: Etange in concentrations
E: Equivibrium concentrations

$$[H_3O^4] = 1.15 \times 10^{-2}$$

$$pH = -\log_{10}(1.15 \times 10^{-2})$$

$$= 1.94$$

16.4 **Estimating the pH of Acid and Base Solutions Strong Acid and Strong Base Solutions**

What is the pH of an aqueous solution of

1.0x10⁻⁵ M sodium hydroxide?

	Na OH +	H_@(I)	= N ₀ ⁺	+ OH.
1	1.0×10-5		0	0
C	- 1,0 × 10-5		1.0 × 10 ⁻⁵	1.0 × 10 ⁻⁵
E	0		1.0 × 10-5	1.0× 10-5

16.4 Estimating the pH of Acid and Base Solutions pH of a Weak Acid – Quadratic Equation

Calculate the pH of a 0.372 M aqueous solution of hypochlorous acid (HCIO, $Ka = 3.5 \times 10^{-8}$).

	HOO +	H ₂ O(I)	$=$ H^3O_+	+ Qo-
	0.3ገጴ		0	0
С	- x		x	χ
Е	0.312 -X		χ	χ

$$3.5 \times 10^{-8} = \frac{(\chi)(\chi)}{(0.372 \cdot \chi)}$$

$$x^2 + 3.5 \times 10^{-8} x - 1.302 \times 10^{-8} = 0$$

$$X = \frac{-8 \div \sqrt{k^2 \cdot 40c}}{2a} \begin{cases} 0 = 1 \\ k = 3.58 \times 10^{-8} \\ c = -1.302 \times 10^{-8} \end{cases}$$

$$X = 1.141 \times 10^{-4}, \quad \frac{-1.141 \times 10^{-4}}{1.5889080} \text{ as this solution}$$
Hakes no chamical sonse!

While this method is the most accurate, solving a quadriatic equation can be problematic on "bad noth days!" & ... as in on Exam days!!

16.4 Estimating the pH of Acid and Base Solutions pH of a Weak Acid – Approx Method

Calculate the pH of a 0.372 M aqueous solution of hypochlorous acid (HCIO, $Ka = 3.5 \times 10^{-8}$).

	H00 +	H ₂ O(I)	= H ₃ O [†]	+ 00-
. 1	0.312		0	0
C	-x		χ	Υ
E	0.312 - x		χ	Х

 $0.372 > 100(3.5 \times 10^{-8})$ then $0.372 - \times \approx 0.372$

$$K_{\alpha} = \frac{[H_30^{\dagger}][\Omega 0]}{[H\Omega 0]}$$

 $\chi^2 = 0.312 (3.5 \times 10^{-8})$

$$x = \sqrt{0.312(3.5 \times 10^{-8})}$$

= 1.141 × 10⁻⁴ = (H₂0⁺)

Often you have done some of these you will notice:That as long as [HA]: > 100 Ka