16.4 Estimating the pH of Acid and Base Solutions
pH of a Weak Base - Approx Method
Calculate the pH of a 0.372 M aqueous solution of
a) 5
d) 8 isoquinoline $\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}, \mathrm{~Kb}=2.5 \times 10^{-9}\right)$
$\mathrm{pH}=? .0 \mathrm{~b}) 6$
(e) 9
c) 7

$$
\begin{aligned}
& 0.372>100\left(2.5 \times 10^{-9}\right) \\
& \text { thus } 0.372-x \approx 0.372 \\
& K_{e}=\frac{\left[\mathrm{CqH}_{7} \mathrm{NH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CaH}_{7} \mathrm{~N}\right]} \\
& 2.5 \times 10^{-9}=\frac{x x}{0.372} \\
& x^{2}=0.372\left(2.5 \times 10^{\circ 9}\right)
\end{aligned}
$$

$$
\begin{aligned}
X & =\sqrt{0.312\left(2.5 \times 10^{-9}\right)} \\
& : 3.05 \times 10^{-5}=\left[0 H^{\circ}\right] \\
p O H & =-\log _{10}\left(3.05 \times 10^{-5}\right)=4.52 \\
p H+p O H & =14 @ 25^{\circ} \mathrm{C} \\
p H & =14-4.52 \\
& =9.48
\end{aligned}
$$

16.5 Acid-Base Properties of Salts

Hydrolysis - Neutral Cations and Anions

16.5 Acid-Base Properties of Salts Acid-Base Properties of Salts

An aqueous solution of NaClO is expected to be:
a) Acidic
b) Basic
c) Neutral

