How do they Resist Drastic pH Change – A Summary

2. How does a buffer resist drastic pH changes when it comes in contact : HaO'or OH'

- H+

How do they Resist Drastic pH Change

Buffer: 1M CH₃CO₂H / 1M CH₃CO₂-Addition of Strong Acid – H₃O⁺

```
HaloaH / CHaloa Base Buse Buse
```

OVERALL CHANGES:

[CH3[02]: 1 ... Rearts with the added H30+

[[H3[O2H]: 1 ... PROduct of the Reaction that Removes the H3O+

[H30']: 1 ... Slight uncrease ... the Result of the ['Buffer Ocid'] 1

pH: 1 ... I Brom the slight uncrease un [430+]

How do they Resist Drastic pH Change

Buffer: 1M CH₃CO₂H / 1M CH₃CO₂-Addition of Strong Base – OH

```
CH3CO2H / [H3CO2]
Weak acid Conjugate Base
Buffer acid Buffer Rose
```

OH' +
$$[H_3[O_2H(aq)] = H_2O(P) + [H_3[O_2]]$$

'Buffer Ocid' : Buffer Base'

OVERALL [HANGES

```
[CH3[OxH]: 1 ... Reacts with the added OHT.
```

ers

do they Resist Drastic pH Change

A buffer solution made from HF and KF has a pH = 2.84.

Addition of OH- will cause -

- a) Increase or Decrease significantly
- c) Decrease slightly
- e) Decrease

- b) Increase slightly
- d) Increase

Identifying Buffers

Which of the following aqueous solutions are good buffer systems?

- 0.34 M ammonium bromide + 0.36 M ammonia
 NH₄⁺
- 0.22 M nitric acid + 0.16 M potassium nitrate
- 0.32 M nitrous acid + 0.21 M potassium nitrite
- 0.18 M <u>barium hydroxide</u> + 0.21 M barium bromide
- 2 To LOOK OUT FOR:
 1) Strong acid + Weak Base) When the concentration of the Strong
 2.) Weak acid + Strong Base) 15 < concentration of the Neak.
 - O,OTM NaOH (ag) + O.14M HF (ag) = H2O(1) + No F (ag)

 O,OTM HF (ag)

 O,OTM No F (ag)

 Neok (Icid

IM Na O.OTM F Consugate Base of HF(ag)