
hydrofl	•	nd 0.243 mol of		om 1.00 L of a 0.133 oride.	
Shoatest way to	approach this	is from the Buffe	er acid equision	rium as this directly dete	Rimines pH
	HF (og)	+ H₂O(I) ⇔	H ₃ O ⁺	+ F-	
<u> </u>	0.133		U	O. 243	
<u>C</u>	-X		X	X	
E	0.133-X		X	0.243+x	
HF]; > 100 (1.2×	10 ⁻⁴), 0.133-X	≈ 0.133		0(7.2×10 ⁻⁴), 0.243+x	
$K_{a} = \frac{[H_{3}O^{*}][F^{*}]}{[HF]}$		$\frac{0.133(7.2\times10^{-4})}{0.243} = 3.94\times10^{-4} = [H_30^{+}]$			
$7.2 \times 10^{-4} = \frac{x(0.243)}{0.133}$			۲۹	= · log (394×10-4) =	3.40
0.243 X		2×10 ⁻⁴)			

Buffen Ocid	20(19) <=> H30 ⁺ + A ⁻ Buffer Bose
$K_{a} = \frac{[H_{3}O^{\dagger}][A^{\cdot}]}{[HA]}$ $[H_{3}O^{\dagger}] = K_{a}\left(\frac{[HA]}{[A^{\cdot}]}\right)$	PH = PKa + log 10 [Buffer Bose] *
= Ka ([[Neak acid]] [Consugate base]) = Ka ([Buffer Ocid]]) - Nog10[H30 ⁺] = - Nog10 Ka - Nog10 [Buffer Ocid] [Buffer Base] PH = PKa - Nog10 [Buffer Ocid] [Buffer Bose]	* <u>BEWARE</u> - Jhis formula works only if [Buffer Base] > 100Ke and; [Buffer Acio] > 100Ke. Yet at No stage is this checked]]he ICE method is much safer as it checks the above to see if you can use the approximation short cut or whether you need to solve the quadrial

	of a buffer solution made from 1.00 L of a 0.133 d and 0.243 mol of sodium fluoride.	M
	-11 ok + Poo [Buffer Bose]	
	PH = PKa + log 10 [Buffer Base] [Buffer Cid] fer Base] = [F] = 0.243 ; [Buffer Cid] = [HF] = 0.133	
lup	fer Mase] = [F] = 0.243 ; [Buffer (Icid] = [HF] = 0.133	
	$p = \frac{1}{2} $	
	pH = - log10 (7.2×10-4) + log10 (0.243)	
	= 3.143 + log,10 (1.827)	
	= 3.143 + 0.262	
	= 3,40	

P		g Buffer Sol	pH = 1	hut wi pH =	log ₁₀ [Buffer Base] [Buffer Acio] hon [Buffer Bose] = [Bi pHa + log10(1) = pKa	uffer Ocid]
	[HCO₂H] ■ ■ <u>0.10 M</u> =	[NaHCO ₂]	 HCO2H/NaHCO2 H2CO3/NaHCO3 HOCI/NaOCI H3BO3/NaH2BO3 NH4CI/NH3 NaHCO3/Na2CO New Target See Qass Neb Sile 	•	$\frac{K_{a} = 1.8 \times 10^{-4}}{K_{a} = 4.2 \times 10^{-7}}$ $K_{a} = 3.5 \times 10^{-8}$ $K_{a} = 7.3 \times 10^{-10}$ $K_{a} = 5.6 \times 10^{-10}$ $K_{a} = 4.8 \times 10^{-11}$	$pK_a = 7.46$ $pK_a = 9.14$ $pK_a = 9.25$
whose desir 2) Adjug	e acid pKo Aed pH.	base combunations is closest to the or base concentred pH.			-> Starting PH, which is > PH, we need More Buffe 2 (Desired PH)	The desired on Ocid. 1 14

17.2	Buffers	
	Buffer Capacity	/

