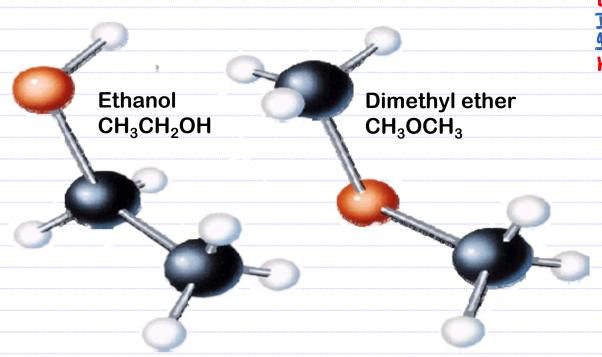

11.4 The Nature of Intermolecular Forces

Dipole - Dipole

Molar Masses Vs Boiling Points			
	M	B.P.	
	g/mol	°C	
CO	28	-192	
PH₃	34	-88	
AsH₃	78	-62	
ICI	162	97	

CI H H-CI CI-H

The Righer the Boiling Point the stronger the Internolecular Jorce translate the stronger the glue holding it together.


Note: See anything with Respect to Motor Mass and Boiling Point?

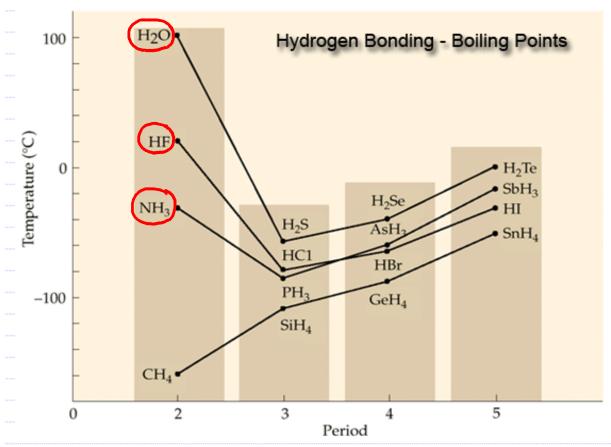
See the obvious trand

11.4 The Nature of Intermolecular Forces Dipole – Dipole – A Special Case – Hydrogen Bonding

O very interesting thing occurs when a dipole is the result of a H-(NOF) bond due to the small size of H and the large electromegative of Nitrogen, Oxygen and Flourine, the resultant dipole-dipole unteraction is much stronger than expected N-H, O-H, F-H.

Form what we call Hydrogen Bonds.

EH3OCH3:


Dimethyl ether Dipole Dipole Anternolecular Force but No Hydrogen Bond
Boiling Point: 34.6°C

CH3 CH2OH:

Athamof Dipole Dipole
Anternolecular Borce with a
Hydrogen Bond
Booking Print 78 50

11.4 The Nature of Intermolecular Forces

Dipole - Dipole - A Special Case - Hydrogen Bonding

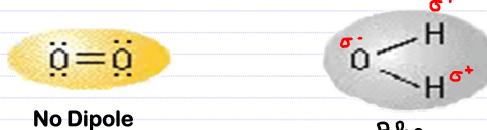
HaTe, HaSe, HaS, HaO

Molecular Geometry, angular, all are
polar Dipole/Dipole IMF's

HI, HBr, HC, HF Molecular Seometry Sinear all are polar Dipole/Dipole IMF.s.

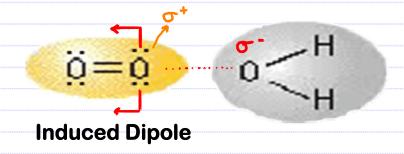
Shy, ashy, Phy, NH3*
Molecular Geometry, Trigonal pyramid
all are polar Dipole/Dipole IMF's

SmHy, GeHy, SiHy, CHy Molecular Geometry, tetrahedron, all are nonpolar.


*: These three notecules contain a Hydrogen Bond.

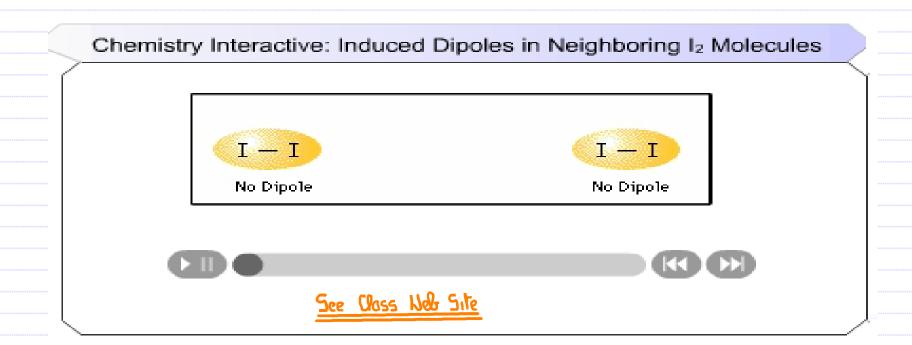
11.4 The Nature of Intermolecular Forces

Dipole – Induced Dipole


Oxygen (non-polar) dissolved in water (polar)

Fish live in water – where do they get their oxygen from?

No Dipole Po


The Solubility of Some Gases in Water			
Gas	Molar Mass	Solubility @ 20°C	
	g/mol	g/100g Water	
H ₂	2.01	0.000160	
N_2	28.0	0.000190	
O ₂	32.0	0.000434	
Cl ₂	70.9	0.729	

Notice: While the solubility is relatively small to does uncrease with uncreasing Molan Mass. The larger the molecule the easier it becomes to unduce a dipole

11.4 The Nature of Intermolecular Forces Induced Dipole – Induced Dipole – aka London Dispersion Forces

*I*₂ is non-polar yet it exists as a solid?

