
11.4 The Nature of Intermolecular Forces London Dispersion Forces – Stronger than you might think Boiling Points of Simple Organic Molecules

Dipole - Dipole Vs Induced Dipole - Induced Dipole (London Dispension Jonces)

NP = NAPOR PRESSURE

- a) UP Vs T
- b) UP Vs Molar Mass (non-polar)
- c) UP in polar molecules Us VP in nonpolar molecules.

Vapor Pressure 11.2

Heat of Vaporization

→ The amount of heat required to convert a riquid to a gas: AHVAP

Which of the following molecules would you expect to have the smallest ΔH°_{vap}

a) CH₃OH

- b) $C_2H6 \checkmark$ c) C_4H_{10}

-> Why?

Non-polar with a smaller Molor Mass than [4410, which is also non-polar.

[H3OH is polar.

Relationship Between P, T, and AH°_{vap} – Clausius-Clapeyron Equation

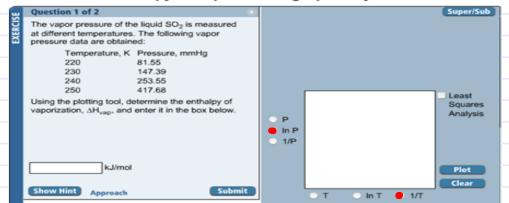
In P =
$$\frac{-\Delta H_{VAP}^{o}}{RT}$$
 + C ΔH_{VAP}^{o} = Heat of Vaporization,
R: 8.314 J, mo?". K" (Ideal Sas Constant)

a) GRAPHICALLY:

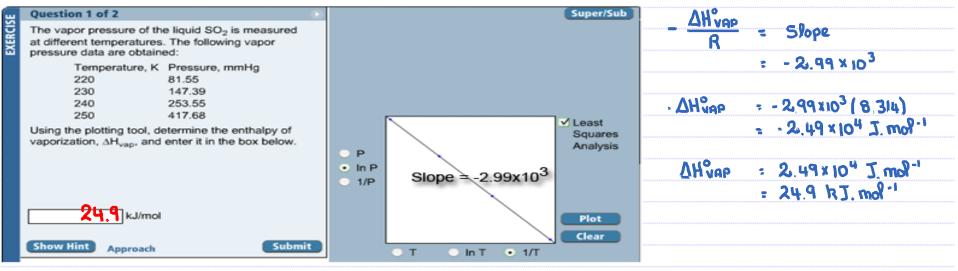
B) QUANTITATIVELY:

$$\int_{\Omega} P_1 = -\frac{\Delta H_{VAP}^0}{RT_1} + C$$

$$\therefore \int_{\Omega} P_2 = -\frac{\Delta H_{VAP}^0}{RT_2} + C$$


$$\int_{\Omega} P_{\lambda} - \int_{\Omega} P_{1} = -\frac{\Delta H_{VAP}^{\circ}}{RT_{\lambda}} + C + \frac{\Delta H_{VAP}^{\circ}}{RT_{1}} - C$$

$$\int_{\Omega} P_2 - \int_{\Omega} P_1 = \frac{\Delta H v_{AP}}{RT_1} - \frac{\Delta H v_{AP}}{RT_2}$$


$$\int_{\Omega} \frac{P_2}{P_1} = \frac{\Delta H_{VRP}^{\circ}}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

Clausius-Clapeyron Equation - Graphical Method

Determine enthalpy of vaporization graphically

Determine enthalpy of vaporization graphically

Clausius-Clapeyron Equation – Quantative

From the following vapor pressure data for heptane, an estimate of the molar heat of vaporization of C_7H_{16} is

P, mm Hg	T, Kelvins
100	315
400	351

$$\int_{\Omega} \frac{P_{2}}{P_{1}} = \frac{\Delta H_{VQP}^{0}}{R} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}} \right)$$

$$\int_{0}^{\infty} \frac{400}{100} = \frac{\Delta H_{VAP}^{0}}{R} \left(\frac{1}{315} - \frac{1}{351} \right)$$

$$\Delta H_{VAP}^{\circ} = \frac{1.39 (8.314)}{3.26 \times 10^{-4}}$$