13.1	Quantitative Expressions of Concentration Units of Concentration – Molarity, Molality, Mole Fraction, Weight %		
	Solution = Jorure + Jorvenn that which is present in the greatest amount.		
Molarity:		Mole Fraction:	
L→ Ih	ne only one you net in Chem 111		
M =	= Moles of solute Volume of the solution im L	X = moles of solute moles of solute + moles of solvent	
Дяаы	BACK: Ne know Nothing quantity wise about the solvent.		
Molality:		Weight %:	
m	= moles of solute moss of solvent (Rg)	$Mt \% of A = \left(\frac{mass of A}{mass of A + mass B + \dots}\right) 100$	
DRAWE	BACK: Ne know mothing quantity Nise about the solution.		

13.1	Quantitative Expressions of Concentration Units of Concentration – Molarity, Molality, Mole Fraction, Weight %	
An aqueous solution is 6.00 % by mass hydrochloric acid. What is the mole fraction of hydrochloric acid in the solution?		
	6,00% HOP = 6.009 HOP 2 X = moles of solute 1009 solvent X = moles of solute + moles of solvent	
	Assume: 1009 of solution. 6g of HQ + 94g of H2O	
	MM: $H_{2}O = 18.02g_{mol}^{-1}$; $HO = 36.5g_{mol}^{-1}$	
	Moles of solute : <u>6.009 HCP 1 mol</u> = 0.164 36.5g	
	Moles of solvent: <u>94.00g H20 1 moles</u> = 5.22 18.02g	
	$X = \frac{0.164}{0.164 + 5.22} = 0.0305$	