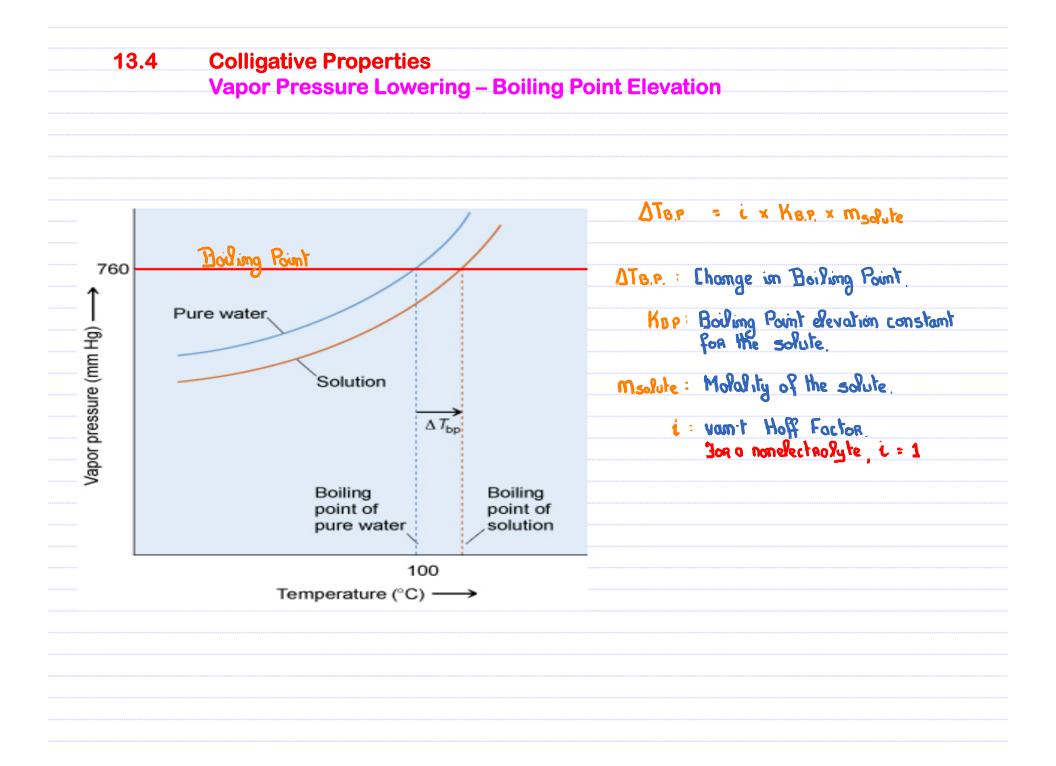

13.1	Quantitative Expressions of Concentration Units of Concentration – Molarity, Molality, Mole Fraction, Weight %			
	Solution = Solute + Solvent that which is present in the greatest amount.			
Molarity:		Mole Fraction:		
↓ Ih	e only one you net in Chem 111			
M =	Moles of solute Volume of the solution im L	X = <u>motes of solute</u> motes of solute + motes of solvent		
Draw	BACK: We know Nothing quantity Nise about the solvent.			
Molality:		Weight %:		
m	= moles of solute moss of solvent (Rg)	$Mt \% of A = \left(\frac{mass of A}{mass of A + mass B + \dots}\right) 100$		
Drawe	BACK: Ne know mothing quantity Nise about the solution.			

An aqueous solution is 6.00 % fraction of hydrochloric acid ir	by mass hydrochloric acid . What is the mole In the solution?
901 200.3 = 901 % 00.3 Insuloz 8001	X = males of solute moles of solute + moles of solvent
Assume 100s	of solution. of HCP + 94g of H2O
•	= 18.02g.md ²¹ ; HCP = 36.5g.mol ⁻¹
Moles of solute :	<u>6.003 HC? 1 mo?</u> = 0.164 36.53
Moles of solvent	= <u>94.00g H20 1 mal</u> = 5.22 18.02g = 5.22
χ.	= 0.164 0.164 + 5.22 = 0.0305


13.4 Colligative Properties Vapor Pressure Lowering – Raoult's Law

Psolution =	Xsolvent × P ^o solvent
Psolution :	Vapon Pressure of the solution.
X solvent :	Male fraction of the solvent
P'solvent :	Nopor Pressure of the pure solvent

Pure solvent	Solution with a nonvolatile solute	
	When a monvolatile solute is	
	added to a volatile solvent. the	
	solute particles block some of	
	the solvent molecules from	
	escaping into the gas phase	
	thus lowering the Vapor Pressure	
	o -	

13.4	Colligative Properties Vapor Pressure Lowering – Raoult's Law
vapor p	oor pressure of benzene (C ₆ H ₆) at 25 °C is 73.0 mm Hg . What is the pressure of a solution consisting of 303 g of benzene and 0.170 mol of that is a nonvolatile nonelectrolyte? <u>20.0 mmHg</u>
	-> ~ 7
	Psolution = X bonzone × P° bonzone
	C6H6 MM = 78,12 g.mol ⁻¹
	<u>303g C6H6 1 mol = 3.88 mol C6H6</u> 78.12g
	$\chi_{C6H_6} = \frac{3.88}{3.88 + 0.17} = 0.958$
	Psolution = 0.958 (73.0) = 69.9 mm Hg

